4.4 After going through PVC plate with waves, air B enters into sprinkling area of
sprinkling system (4) and be rehumidifyed, recooled and dust moved. Then some of moisture will be brought away by eliminator (3).
4.5 另一方面,常温的洁净水A 与进入JLK 滤尘空气处理器的空气B 进行热湿交换后, 因吸热而温度升高,浑浊度加大。常温喷淋水温度升高后,在有曲纹的PVC 塑料 片上与外来流动的干热空气发生蒸发作用,使其喷淋水膜自身温度又有所下降, 在一定的外界气候条件下,最终达到一个恒温,这个恒温高于以前的常温水温度, 而又远低于进入该设备的外界干热空气。从能量守恒角度,空气B 变为空气C 的 过程为等焓加湿降温过程。所以有了第5 项的焓湿计算参考依据。
4.5 On the other hand, when clear water at normal temperature (A) exchanges heat and humidity with air (B) in JLK Filter air-handling unit, it absorbs heat and then
temperature goes up, turbidity also increases. After temperature of sprinkling water goes up, it will evaporate with dry and hot floating air at PVC plate with waves, then temperature of water film goes down, and finally reaches a constant temperature, which is higher than normal temperature and far lower than hot, dry floating air entering into this equipment, under certain climate, According to energy conversation, air B transfers to air C is an isoenthalpy, humidifying and cooling process. Next comes to referrence of enthalpy calculation. picture 4-
4.6 常温的洁净水在滤尘空气处理器内多次循环并与空气 B 多次交换后浑浊度加大, 收到集水盆后经渗透过滤池,泥沙最终积沉到渗透过滤池的底部,渗透过滤池的 底部有定时自动排污电动阀门10,泥沙及部分浑浊水排离滤尘空气处理器,离滤 尘空气处理器水位降低后,自动补水12 系统开启,补充入常温的洁净水。
4.6 After several times of circulating and heat exchanging with air B, turbidity of the
water at normal temperature becomes larger. When it goes through penetrated filtering basin in cold water basin, mud and sand will stay at the bottom of penetrated filtering basin, where an electric valve for pollution discharge (10) is fixed. The valve will turn on automatically, and bring away mud, sand and some cloudy water. When water level in
Filter air-handling unit is too low, auto make-up system (12) turn on, and let in clear water at normal temperature
4.7 含粉尘的干燥、高温空气B 经滤尘空气处理器处理后,变成干球温度相对较低(约 为35℃),湿度相对较大(约为56%,计算结果见图5-4 或第17 页)也较为洁净 的空气C,空气C 可作为中央空调机组通风系统的鲜风系统以便根据需要作进一步 的处理,例如通过EU5 的空气过滤器,将进入鲜风系统的空气进一步净化,通过 冷冻等方式将空气进一步冷却或除湿等。
4.7 After filtrated by Filter air-handling unit, dusty, hot air B will turn to clear air C, of which dry bulb temperature is correspondingly lower (at about 35℃) and humidity
comparatively bigger (about 56%, calculating results please check picture 5-4 or page 17). Air C can be used as flesh air system in center conditioning ventilating system and be retreated when needed. For examples, air entering into flesh air system will be refiltrated by EU5 air filtration, then be farther cooled and dried by refrigeration.
5. 有关焓湿计算参考
5. Referrence of enthalpy calculation
5.1 外界高温干燥的空气通过滤尘空气处理器强制通风与常温喷淋水在填料表面的热 交换过程主要有两部分:一是高温空气与冷却水的热传递过程,空气降温,冷却 水升温;另一方面,冷却水在填料表面经强制通风,水分蒸发,水温度降低,干 燥的空气加湿,经过以上两个过程常温水升高到一个恒定的温度后基本不再变化, 等焓减湿升温的处理过程空气进出滤尘空气处理器的过程也基本是一个等焓加湿 降温的处理过程。
5.1 There are mainly two processes for heat exchange between mechanical ventilated,dry, hot air and sprinkling water at normal temperature on the surface of filling: oneis heat exchange between hot air and cooled water, air temperature drops while water temperature rises; the other is heat exchange between cooling water on surface of filling and mechanical ventilated air, water evaporated, water temperature drops and dry air humidified. Water’s temperature will rise to and remain at a constant degree through above two isoenthalpy, humidifying and cooling processes.
5.2 对滤尘空气处理器内部空气 B 与循环水A 的传导热交换量关系及公式,推导如下: Q=C1M1ΔT1=C2M2ΔT2 (空气B 与循环水A 的传导热交换量相等)
Q/h=C1M1/h *ΔT1=C2M2/h *ΔT2(单位时间内的传导热交换量相等)
C1ρ1ν1/h *ΔT1=C2ρ2ν2/h *ΔT2
式中 Q ——空气B 与循环水A 的热交换量,单位:kcal/h
C1—空气B 的比热=1.005kJ/(kg*K)=0.24kcal/(kg*℃)
C2—循环水A 的比热=1.00kcal/(kg*℃)
M1——空气B 的 质量,单位:kg
M2——循环水A 的质量,单位:kg
ΔT1——空气B 的温降,单位:℃
ΔT2——循环水A 的温升,单位:℃
ρ1——空气B 的密度=1.13 kg/ m3
ρ2——循环水A 的密度=1000 kg/ m3
ν1/h ——空气B 的体积流量=200,000 m3/h
ν2/h ——循环水A 的体积流量=200 m3/h
代入相关数据 0.24×1.13×200,000 *ΔT1=1.00×1000×200*ΔT2
得出ΔT2=0.2712*ΔT1
5.2 Following is the derivation of air B and circulating water A’s conductive heat exchang capacity relationship and formula
Q=C1M1ΔT1=C2M2ΔT2(conductive heat exchang capacity bwteen B
and A is the same)
Q/h=C1M1/h *ΔT1=C2M2/h *ΔT2(conductive heat exchang capacity in
unittime is the same)
C1ρ1ν1/h *ΔT1=C2ρ2ν2/h *ΔT2
Of which Q ——heat exchang capacity between B and A,unit:kcal/h
C1——specific heat of B=1.005kJ/(kg*K)=0.24kcal/(kg*℃)
C2——specific heat of A=1.00kcal/(kg*℃)
M1——mass of B, unit:kg
M2——mass of A,unit:kg
ΔT1——temperature drop of B,unit:℃
ΔT2——temperature rise of A,unit:℃
ρ1——density of B=1.13 kg/ m3
ρ2——density of A=1000 kg/ m3
ν1/h ——air flow of B=200,000 m3/h
ν2/h ——water flow of A=200 m3/h
input relevant datas 0.24×1.13×200,000 *ΔT1=1.00×1000×200*ΔT2
result ΔT2=0.2712*ΔT1
5.3 对滤尘空气处理器内部空气 B 与循环水A 的传导热交换量,根据有代表性的3 种 假设计算出结果如下供参考(辐射热量较小,不作计算考虑):
状态点 名 称 数 据 备 注
假设1 空气B 温降ΔT1=8℃ 48℃→40℃ 空气C 温度=40℃
循环水A 的温升ΔT2=2.17℃ 32→34.17℃ ΔT2=0.2712*ΔT1
001 点见
图5-5 或
第18 页 空气C 与水A 升温后温差 40-34.17=5.83℃ 仍能热传导
假设2 空气B 温降ΔT1=10℃ 48℃→38℃ 空气C 温度=38℃
循环水A 的温升ΔT2=2.71℃ 32→34.71℃ ΔT2=0.2712*ΔT1
002 点见
图5-6 或
第19 页 空气C 与水A 升温后温差 38-34.71=3.29℃ 仍能热传导
假设3 空气B 温降ΔT1=13℃ 48℃→35℃ 空气C 温度=35℃ 循环水A 的温升ΔT2=3.53℃ 32→35.53℃ ΔT2=0.2712*ΔT1
003 点见 图5-7 或
第20 页 空气C 与水A 升温后温差 35-35.53=-0.53℃ 不能热传导
5.3 Following is calculation results for air B and circulating water A’s conductive heat exchang capacity under three representative assumption. This is just for referrence. (radiant heat is too small to be omitted)
5.4 在滤尘空气处理器内部,冷却水在填料表面经强制通风,水分蒸发,水温度降低, 按以上第3 种不利假设,将循环水A 的温升后的35.53℃作为水分蒸发前的温度, 蒸发前的空气条件按不利情况:干球温度为48℃,湿球温度为27.4℃,大气压约 为96410Pa 考虑计算。相关推导见图5-2,图5-1 为滤尘空气处理器在设计特定标 准工况下的状态,由于该热力分析计算软件为较专业而成熟的软件,具有权威和 可行性,其详细推导过程不再细述。计算结果表明进塔空气B 可将温升为35.53℃ 的循环水A 降温至30.53℃。从而可以证明以上假设3——空气B 由干球温度48℃ 降到干球温度35℃是完全可以的。
5.4 In Filter air-handling unit, temperature of cooling water at filling surface will be dropped by mechanical ventilation and water evaporation. According to above three adverse assumptions, regard rised temperature of A ΔT2=35.53℃ as temperature before evaporation, and as for air condition before evaporation, considering into the worst condition: dry bulb temperature at 48℃,wet bulbtemperature at 27.4℃, atmospheric pressure at 96410Pa, relative derivation please see picture 5-2. Picture 5-1 is the best
state for Filter air-handling unit under design condition, since this thermal analysis software is a professional, fully-fledged, authoritative and practicable software, we will not state derivation in detail. The results prove that air B can cool water A from 35.53℃ to 30.53℃, thus we can get that above assumption 3 is possible.
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。