carbonium ion
no
endothermal reaction
weak totally very fast
更需要关注催化剂的含炭量与活性的关系,尽可能延长催化剂的活性工作期,这对限制催化剂返混提出了更高要求。此外,甲醇制烯烃为放热过程,需要采用移热或其他手段控制反应器温度;而催化裂化为吸热反应,再生器与反应器通过催化剂循环形成热量耦合,催化剂循环量需要同时满足反应活性及供热要求。由于甲醇制烯烃的反应器与再生器均为放热,二者之间没有热量耦合关系,因此两器之间的催化剂循环量仅由再生需求而定。
161 (1): 304-309
[4] Lesthaeghe D, Horré A, Waroquier M, Marin G B, van Speybroeck V.
Theoretical insights on methylbenzene side-chain growth in ZSM-5 zeolites for methanol-to-olefin conversion [J]. Chem. Eur. J., 2009, 15: 10803-10808
[5] Xu S T, Zheng A M, Wei Y X, Chen J R, Li J Z, Chu Y Y, Zhang M Z,
Wang Q Y, Zhou Y, Wang J B, Deng F, Liu Z M. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites [J]. Angew. Chem. Int. Ed., 2013, 125(44): 11778-11782
[6] Arstad B, Nicholas J B, Haw J F. Theoretical study of the
methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis [J]. J. Am. Chem. Soc., 2004, 126(9): 2991-3001 [7] Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K P, Kolboe S,
Bj?rgen M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes [J]. J. Am. Chem. Soc., 2006, 128 (46): 14770-14771
[8] Bj?rgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F,
Palumbo L, Bordiga S, Olsbye U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species [J]. J. Catal., 2007, 249 (2): 195-207
[9] Ilias S, Bhan A. Tuning the selectivity of methanol-to-hydrocarbons
conversion on H-ZSM-5 by co-processing olefin or aromatic compounds [J]. J. Catal., 2012, 290: 186-192
[10] Li Y X, Zhang M Y, Wang D Z, Wei F, Wang Y. Differences in the
methanol-to-olefins reaction catalyzed by SAPO-34 with dimethyl ether as reactant [J]. J. Catal., 2014, 311: 281-287
[11] Zhu J, Cui Y, Wang Y, Wei F. Direct synthesis of hierarchical zeolite
from a natural layered material [J]. Chem. Commun., 2009, 22: 3282-3284
[12] Li Y X, Huang Y H, Guo J H, Wang D Z, Wei F, Wang Y. Hierarchical
SAPO-34/18 zeolite with low acid site density for converting methanol to olefins [J]. Catal. Today, 2014, 233: 2-7
[13] Yang G J, Wei Y X, Xu S T, Chen J R, Li J Z, Liu Z M.
Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions [J]. J. Phys. Chem. C, 2013, 117(16):
4 结 论
鉴于我国以煤炭为主的化石资源,煤化工的研
究与发展对我国意义尤其重大。甲醇制烯烃是煤制化学品的关键环节。分子筛催化剂作用下的甲醇制烯烃反应过程具有自催化、积炭失活、复杂反应体系及强放热的特点,因此对催化剂有结构与酸性控制等要求,对反应器有移热控温、更新催化剂以维持活性、限制气相与固相返混以提高活性与选择性等要求。流化床反应器及具有多级结构的分子筛催化剂是未来的发展方向。改进流化床反应器的关键在于如何有效降低气相与固相的返混。 References
[1] Kokotailo G T, Lawton S L, Olson D H. Structure of synthetic zeolite
ZSM-5 [J]. Nature, 1978, 272: 437-438
[2] Dent L S, Smith J V. Crystal structure of chabazite, a molecular sieve
[J]. Nature, 1958, 181: 1794-1796
[3] Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon
formation from methanol over SAPO-34 (Ⅱ): Isotopic labeling studies of the co-reaction of propene and methanol [J]. J. Catal., 1996,
· 2484· 化 工 学 报 第65卷
8214-8222
[14] Dai W L, Li N, Li L D, Guan N J, Hunger M. Unexpected
methanol-to-olefin conversion activity of low-silica aluminophosphate molecular sieves [J]. Catal. Comm., 2011, 16(1): 124-127
[15] Wei Y X, Li J Z, Yuan C Y, Xu S T, Zhou Y, Chen J R, Wang Q Y,
Zhang Q, Liu Z M. Generation of diamondoid hydrocarbons as confined compounds in SAPO-34 catalyst in the conversion of methanol [J]. Chem. Commun., 2012, 48(25): 3082-3084
[16] Chen D, Gr?nvold A, Moljord K, Holmen A. Methanol conversion to
light olefins over SAPO-34: reaction network and deactivation kinetics [J]. Ind. Eng. Chem. Res., 2007, 46(12): 4116-4123
[17] Castillo-welter F, Walter D, Steden C, Zeyen R. Multi-tube reactor
having a structured packing [P]: WO, 2012/113427 A1. 2012-08-30 [18] Graziani K R, Sapre A V. Multi-stage adiabatic process for methanol
conversion to light olefins[P]: US, 4542252. 1985-09-17
[19] Bach H, Brehm L, Bohle J, Quass G, Heinz G, Bartels K, D?rr H,
K?mpel H. Reactor for producing C2-to-C8-olefins from a material flow containing oxygenate, water vapor and one or more hydrocarbons[P]: US, 2010/006337 A1. 2010-03-11
[20] Barger P T, Fritsch T R, Fullerton H E, Stine L O. Moving bed
hydrocarbon conversion process[P]: US, 5157181. 1992-10-20
[21] Avidan A A, Gould R M, Kane S E. Conversion of oxygenates to
lower olefins in a turbulent fluidized catalyst bed [P]: US, 4547616. 1985-10-15
[22] Kuechler K H, Lattner J R, Coute N P, Smith J S, Krieger J L.
Multiple riser reactor with centralized catalyst return [P]: US, 7385099. 2008-06-10
[23] Daviduk N, Haddad J H. Fluid zeolite catalyst conversion of alcohols
and oxygenated derivatives to hydrocarbons by controlling exothermic reaction heat[P]: US, 4328384. 1982-05-04
[24] Miller L W. Fast-fluidized bed reactor for MTO process[P]: US,
6166282. 2000-12-26
[25] Wang Yao (王垚), Wei Fei (魏飞), Qian Zhen (钱震), Yuan Xuemin
(袁学民), Zhou Huaqun (周华群), Liu Jiaqiang (刘家强). Method to produce propylene in a fluidized-bed reactor by catalytic cracking [P]: CN, 200610144290.2. 2009-10-21
[26] Stevens C J, Sechrist P A, Richard A J II. Two stage oxygenate
conversion reactor with improved selectivity[P]: US, 2011/0300026 A1. 2011-12-08
[27] van Westrenen J, Chewter L A, Winter F. Process for converting an
oxygenate into an olefin-containing product, and reactor system [P]: US, 2010/0268007A1. 2010-10-21
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。