导数题型归纳
请同学们高度重视:
首先,关于二次函数的不等式恒成立的主要解法:
1、分离变量;2变更主元;3根分布;4判别式法
5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决:
第一步:令f(x)?0得到两个根;
第二步:画两图或列表;
第三步:由图表可知;
其中不等式恒成立问题的实质是函数的最值问题,
2、常见处理方法有三种: '
第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);
例1:设函数y?f(x)在区间D上的导数为f?(x),f?(x)在区间D上的导数为g(x),若在区间D上,g(x)?0恒成立,则称函数y?f(x)在区间D上为“凸函数”,已知实数
x4mx33x2
??m是常数,f(x)? 1262
(1)若y?f(x)在区间?0,3?上为“凸函数”,求m的取值范围;
(2)若对满足m?2的任何一个实数m,函数f(x)在区间?a,b?上都为“凸函数”,求b?a的最大值.
例2:设函数f(x)??13x?2ax2?3a2x?b(0?a?1,b?R) 3
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若对任意的x?[a?1,a?2],不等式f?(x)?a恒成立,求a的取值范围.(二次函数区间最值的例子)
www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。