高考文科数学专题复习导数训练题

 

高考文科数学专题复习导数训练题(文)

一、考点回顾和基础知识

1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义.

2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用.

3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值.

2.导数(导函数的简称)的定义:设x0是函数y?f(x)定义域的一点,如果自变量x在x0处有增量?x,则函数值y也引起相应的增量?y?f(x0??x)?f(x0);比值

点x0到x0??x之间的平均变化率;如果极限lim?yf(x0??x)?f(x0)称为函数y?f(x)在??x?xf(x0??x)?f(x0)?y存在,则称函数y?f(x)在?lim?x?0?x?x?0?x

点x0处可导,并把这个极限叫做y?f(x)在x0处的导数,记作f'(x0)或y'|x?x0,即f'(x0)=limf(x0??x)?f(x0)?y. ?lim?x?0?x?x?0?x

注:①?x是增量,我们也称为“改变量”,因为?x可正,可负,但不为零.

②以知函数y?f(x)定义域为A,y?f'(x)的定义域为B,则A与B关系为A?B.

3.求导数的四则运算法则:

(u?v)'?u'?v'?y?f1(x)?f2(x)?...?fn(x)?y'?f1'(x)?f2'(x)?...?fn'(x)

(uv)'?vu'?v'u?(cv)'?c'v?cv'?cv'(c为常数)

www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。


TOP最近更新内容

    长城小学关爱留守儿童工作制度
    园林史名词解释
  • 上一篇:向量与平面几何20170301
  • 下一篇:导数题型归纳