分式方程应用题
分式方程应用性问题联系实际比较广泛,灵活运用分式的基本性质,有助于解决应用问题中出现的分式化简、计算、求值等题目,运用分式的计算有助于解决日常生活实际问题。
解分式方程应用题的一般步骤为:
1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的等量关系(一般两个等量关系,一个用于设未知数,一个用来列方程),审题时也可以利用图示法,列表法来帮助理解题意.
2、“设”是指未知数(通常问什么就设什么).包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).
3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.
4、“解”就是解方程,求出未知数的值.
5、“验”就是验解,即检验方程的解能否保证实际问题有意义.
6、“答”就是写出答案(包括单位名称)
类型一:行程问题
基本量之间的关系:路程=速度×时间,即:s?vt。在具体问题中需灵活变换。
例一:从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
对应练习:
1、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。已知B的速度是A的速度的3倍,求两车的速度。
www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。