20062011年数列竞赛题评析

 

解析几何竞赛题求解的几种常见策略

陈硕罡吴国建(浙江省东阳中学322100)

解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。

一、用函数(变量)的观点来解决问题

函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。

【例1】(2010全国高中数学联赛试题)已知抛物线y2?6x上的两个动点A(x1,y1)和B(x2,y2),其中x1?x2且x1?x2?4.线段AB的垂直平分线与x轴交于点C,求△ABC面积的最大值.

【分析】通过对题目的分析可以发现线段AB中点的横坐标已经是定值,只有纵坐标在变化,可以把AB中点的纵坐标作为主变量,这样只要把?ABC的面积表示成以AB中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。

【解析】设线段AB的中点M坐标为((2,y0),则

则直线AB的斜率:k?y1?y2y1?y263?2?? 2y1y2x1?x2y1?y2y0?66

y0(x?2),易知线段AB的中垂线与x轴的交点为定点C(5,0) 3线段AB的中垂线方程:y?y0??

直线AB的方程:y?y0?

由题意,32, (x?2),联立抛物线方程消去x可得:y2?2y0y?2y0?12?0(1)y0y1,y2是方程(1)的两个实根,且y1?y2,所

22??4y0?4(2y0?12)?0???y0?

弦长|AB|?y1?y2|??点C(5,0)到直线AB

的距离:h?|CM|?

则S?ABC?1|AB|?h?

2??22当且仅当9?y0,

即y0?,

点A(?24?2y0636)B

,37)或

A(6?6 B(时等号成立,所以?ABC

33

www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。


TOP最近更新内容

    园林史名词解释
    长城小学关爱留守儿童工作制度
  • 上一篇:陕西省咸阳北城中学2016-2017学年高一上学期第三次月考英语试题
  • 下一篇:名词解释