Table2
Parametersofthenumericalmodel.Property
Permeability
AveragerelativeoilpermeabilityOildensity
GravityaccelerationHt
DynamicviscosityatsteamtemperaturePorosity
ReservoirthermaldiffusivityReservoirtemperatureSteamtemperature
FormationheatcapacityLatentheatofsteamSteamqualityWaterdensity
Coef?cientofviscositychange,mCoef?cientofaveragevelocity,aInitialoilsaturationInitialwatersaturation
Value25000.4810089.81200.00732
0.000000610240
2,100,0001,740,0009510003.90.48515
UnitmD–
kg/m3m/s2mPa.s%m2/s°C°C
J/(m3°C)J/kg%
kg/m3––%%
Table1
Experimentalparameters,ChungandButler(1988).Properties
Porosity
InitialoilsaturationResidualoilsaturationAbsolutepermeabilityRelativepermeabilityOildensityModelheight
ThermaldiffusivityConstant‘a’Constant‘m’OilviscosityModelthickness
Value39100529300.480.980.210.05070.43.690.03
Unit%%%
Darcy–
gm/cm3m
m2/day––
m2/daym
34A.Azad,R.J.Chalaturnyk/JournalofPetroleumScienceandEngineering82-83(2012)27–37
Relative Permeability
1
Kro0.750.50.2500
KroKroAfter History Matching
0.20.40.60.81
Fig.10.Relativepermeabilitycurvesresultedfromhistorymatching.
Oil or Steam Rate, m3/day/m
0.750.60.45
Circular Model
STEAM
0.30.150
Numerical Model
OIL
Butler-Like Models
02004006008001000
Time, day
Fig.11.Historymatchingofoilproductionandsteaminjectionratebythecurrentanalyticalmodel.
Cumulative Oil or Steam, m3/m
500400300
Butler-Like Models
Numerical ModelCircular Model
2001000200
600
Time, day
Fig.12.Cumulativeoilproductionandsteaminjectionpredictedbythecurrentnumericalmodelcomparedtothenumericalanalysisresults.
Thetransitionzoneoftemperaturehasbeenshownforthreemo-mentsofrecoveryprocessinFig.14.SimilartoButlertheory,thismodelalsoconsidersasharpseparationbetweenthesteamchamberandotherpartsofthereservoirasisshowninFig.14bydashedcurves.However,thelocationofthesteamchamberisfairlypredicted.
6.Conclusions
Inconclusionitcanbesaidthattheproposedmodelwhichbene-?tsfromacirculargeometryofsteamchamberandmethodofslices,canbeaveryhelpfulmethodtobeusedasafastsimulatorinSAGDprojects.Theadvantageofthemodelisthatthefastspeedruntime
Steam/Oil Ratio, m3/m3
3.632.41.81.20.600
200
400
Reis Model
Circular Model
Numerical Model
6008001000
Time, day
Fig.13.Steam/oilratiopredictedduringhistorymatchingcomparedtotheresultsofanumericalsimulator.
A.Azad,R.J.Chalaturnyk/JournalofPetroleumScienceandEngineering82-83(2012)27–3735
Fig.14.Oilsaturationdistributionatthreemomentsoftheanalysis.
isservedbyaphysics-basedtheory,nota‘black-box’algorithm.Thelongtermgoalofusingsuchasimulatoristojoinwithanoptimiza-tionmethodologyforfastdecisionmakingpurposes.However,itshouldalsobenotedthatatthisstagetheproposedmodelhasitslim-itationsanditneedsmoreimprovementforpracticalcases.Inrealprojectswherehorizontalboreholepairsaredrilledclosetoeachothertooptimizetheoilproduction,boundaryeffectsofneighboringwellsshouldbeconsideredinwhichthecircularmodelsisnotcapa-bleofperformingsuchanalysesyet.
NomenclatureLatinacoef?cientofvelocitycspeci?cheatoftheformationdqtdifferential?owofoilattimet(alsoseeFig.6)dAdifferentialareaDDiameter(seeFig.7)DSCDiameterofthesteamchamber(seeFig.8)DStartDiameterofthesteamchamberatthebeginningofthe
process
ggravityHreservoirheightHtreservoirheightkpermeabilityKoabsoluteoilpermeabilityKrorelativeoilpermeabilitylactuallengthLlengthofboreholesLsspeci?clatentheatofsteammcoef?cientofviscosityntheindexofeachsliceqoilproductionrateqssteaminjectionrate(involumeofwater)QintheheatenergyinsidethesteamchamberQouttheheatlossaroundthesteamchamberrradiusSo,icurrentoilsaturationinithsliceSo,Rresidualoilsaturationinithslicetcumulativetimeaftertouchingthecaprock(inEq.(17))TssteamtemperatureTrreservoirtemperatureUnormalvelocitytothesteamchamberedge
Ulocal
UmaxUHXlocalnormalvelocitytothesteamchamberedge
maximumnormalvelocitytothesteamchamberedge
horizontalvelocityofthesteamchamberatseparationlineEq.(8)(seeFig.7)
GreekαβΔSo?ρρoμμos?Φξρwρθ
thermaldiffusivityofthereservoirseeFig.8
(initial?residual)oilsaturationporosityoildensityoildensity
dynamicoilviscosity
dynamicoilviscosityatsteamtemperature?owpotentialfunctionSeeFig.8
densityofwater
densityoftheformationseeFig.7
Acknowledgments
AuthorswouldliketoacknowledgeNathanDeismanforhiscon-tributiononreviewingthispaper.Histechnicalsupportandhelpfulcommentsarehighlyappreciated.
AppendixA.Fundamentalsofthedrainagemodel
Fig.A.1showstheparametersofthedrainagemodelonasmallsegmentofthesteamchamberedgethathasbeenadaptedfromBut-lermodel.Themodelisderivedforaunitlengthoftheboreholeper-pendiculartothepage.BasedonDarcy'slaw:dq?
kΔρ
?ΦdAeA:1T
where:dqk
differential?owofoilpermeability
36A.Azad,R.J.Chalaturnyk/JournalofPetroleumScienceandEngineering82-83(2012)27–37
Fig.A.1.Asmallsegmentofthesteamchambercrosssection.
Δρρo?ρg
μoilviscosity
dAdξ×1.0(unitlength)=dξ?Φ
?owpotentialfunction
Sinceρo?ρg,then:dq?
kρo
?Φdξ:eA:2T
Forthespeci?csituationillustratedinFig.A.1thatthesteam
chamberedgemakesanangleofθtothehorizon,theDarcy'sequa-tionbecomes:
?Φ?ΔΦ
?gsinθeA:3T
dq?kρo
egsinθTdξ:eA:4T
Eq.(A.4)canberecalculatedfordifferentshapesofthesteamchamber.Inthisequation,viscositycanbealsosubstitutedbythefunctionproposedbyButlerthatconsidersthevariationofviscosityinfrontofthesteamchamber.Thisfunctioncomesfromthecombina-tionofEqs.(A.5)and(A.6).T?Tr?Uξ=T?e
α
eA:5T
sr??
T?T??rm
?
μos
sr
:eA:6T
Eq.(A.5)isthesolutionoftheonedimensionalheattransferforan
advancingfrontwiththevelocityofU.However,Eq.(A.6)determinestheviscosityofoilatthedistanceξfromthesteamchamberedge.The
resultofsubstitutingEq.(A.5)inEq.(A.6)isEq.(A.7)whichisiden-ticaltoEq.(4)inthetext.μeξT?
μos:
eA:7T
exp?
mUξ
AppendixB.Energylossaroundthesteamchamber
Thetotalthermalenergylossoutofthegrowingsteamchamberiscalculatedrelatedtothetemperaturedifferencebeforeandaftertheinjectionofsteam:
θ∞
Qside?∫∫ρcΔTdξerdθT:
eB:1T
00
TemperaturedifferencecanbesubstitutedusingEq.(A.5):θ∞??Q?ρceTU??
localξ
side
s?TrT∫∫exp?dξerdθTeB:2T
00
??
Qr
??
θ
side?ρcαeTs?TrT
Udθ
eB:3T
local
∫0
QρcαeTs?TrTrθ
side?
U:
eB:4T
local
Forafullcircle,therateofenergylossoutsideofthesteamcham-beriscalculatedasfollows:dQ????
sidedρcαeTs??TrTDθ
:eB:5T
maxAppendixC.Initialcondition
Whensteamchamber'sdiameterislessthanDStart,Eq.(5)canberewrittenforanysizeofsteamchamber(D)asfollows.Theshapeofthesteamchamberisnoneofthecases‘A’to‘C’(seeFig.A.1).Inthiscase,thecenterofthecircleisontheinjectoranditgrowsbeforetouchingtheproducer.
????0ooghDiStartD1dqKρ?amUmaxξexp
@tt?DdξeC:1T
osStartD?tD
dqK??????D??
oρo?amUmaxξg?StarttD??t?exp
osDdξeC:2T
Start∞
q?∫
K????????
oρo?amUmaxξg?DStarttD??
texpDdξC:3T
Starte0
os
??qKρ????????
D??ooαg?StarttD??
t?
:eC:4T
osmaxStartMaterialbalanceforthesamecasewouldbe:
qd????12????1dDt?dteφΔSoT8πD?8eφΔSoTe2πDT
dt?1
4
eφΔSoTeπDUmaxT:eC:5
T
A.Azad,R.J.Chalaturnyk/JournalofPetroleumScienceandEngineering82-83(2012)27–3737
Therefore,themaximumvelocityatthebeginningoftheproduc-tionisformulated:
??qKρ????????
tD????ooαg?DStartD?1t?eφΔSoTeπDUmaxTeC:osamUStart46T
max???
Kρ??
??D??????U2
oo??α??g?StarttD??4max;initial
eC:7T
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。