Thosesliceswhoseoilsaturationreachestheresidualvaluewilljointhesteamchamberinthenexttimestep.Atanytimestepthe
Fig.8.De?nitionoflocalvelocityatdifferentpositionofsteamchamber(SC)andthelocationatwhich?owrateiscalculated.
32A.Azad,R.J.Chalaturnyk/JournalofPetroleumScienceandEngineering82-83(2012)27–37
ρwdensityofwater
QintheheatenergyinsidethesteamchamberQouttheheatlossaroundthesteamchamber.
Eq.(14)hastwomainterms;theleftsideistherateofinjectionofenergyintothereservoir,andtherightsidedeterminestheenergydistributionratethroughthesteamchamberintothereservoir.Forenergybalance,slicesarenotconsideredincalculation.TheenergyinsidethesteamchamberiscalculatedusingEq.(15)whereρisthedensityoftheformation,cisthespeci?cheatoftheformation,TsisthesteamtemperatureandTristhereservoirtemperature.Eachmovementfromoneslice(n)tothenext(n+1)wouldbeusedtode-terminethelastterm,dA/dt.dQin?ρceTdA
s?TrT:
e15T
IneachcasefromAtoC(seeFig.5),energylossfromthebodyofthesteamchamberiscalculatedusingEq.(16),ignoringtheexistenceoreffectofneighboringwells.ThederivationofEq.(16)isexpandedindetailsinAppendixB.dQ??αeT??
sidedρcs?TrTdt
?Dθ
dtaU1?cosθT:e16T
maxeIncasesBandCthatsteamchamberisnotafullcircle,andenergylossoccursthroughtheoverburdenattheseparationlinebetweenoilsandformationandotherlayersasderivedbyReis(1992):dQr????
topα
dt?2ρceTp??s?TrTUHte17T
where:UH
horizontalvelocityofthesteamchamberatseparationlinet
cumulativetimeaftertouchingthecaprock.
3.4.Initialconditions
Whenaclearcommunicationbetweeninjectorandproducerboreholesisidenti?ed,thesteamchambershapeappearsintheres-ervoiraroundtheinjector.Themaximumvelocityofthesteamcham-bergrowthisdeterminedbyEq.(18)(seeAppendixC).U2
8Koρoαg
max;initial?
μφΔS:
18T
osamoπ2DeStart
3.5.Calculationprocedure
Althoughtheformulationpresentedintheprevioussub-sectionslooksclosed-form,apartofthecalculationneedstobeperformednu-merically.Therefore,asimplecomputercodeisrequiredforimple-mentingthemodel.Thecalculationprocedurehasbeenlistedbelowinastep-by-stepalgorithm:
1Selectdiameterincrement.Thissinglevalueprovidestheincre-mentalincreaseindiameterandmathematicallydividesthereser-voirintoslices.Whileallthesteamchambercirclesareattachedtotheproducer,thesteamchambergrowsillustratedinFig.4.2CalculatetheinitialvelocityUmax,initialusingEq.(18).3Accumulatethetimeincrementsfromthetimezero.
4CalculatetheoilrateineachsliceaccordingtoitslocationusingEqs.(3)–(11).Iftherateislessthanaminimum,marktheslice
asinactive.Usuallytheslicesclosertothesteamchamberareactive
only.
5
Calculatetheincrementaltimerequiredforthe?rstsliceinfrontofthesteamchambertoreachtheresidualoilsaturationbasedonthedrainageratecalculatedinstep4.
6
Calculatetheaccumulatedoilproductionandupdatetheoilsatura-tioninactiveslicesfortheincrementaltimeperiodcalculatedinstep6usingEqs.(12)and(13).Now,thesteamchamberwilloccu-pyanothersliceandgetslarger.
7Calculatethevelocityofthesteamchamberfromthetimeandthediameterincrements.
8Calculatethesteaminjectionrateforthetotalincrementaloilpro-ductionrateusingEqs.(14)–(17).
9
Repeatallthestepsfrom3to8fortheperiodoftimeorproductionlimityouwanttoreach.
4.Modelvalidation:experimentaldata
ChungandButler(1988)conductedlaboratorytestsandcom-paredthedatatotheresultsoftheiranalyticalmodel.Thesmall
scalelaboratorymodelwas35cmwide,22cmhighand3cmthick.Theydesignedtwoinjectionstrategies:scheme‘A’and‘B’.Inscheme‘A’theinjectorwashorizontalandslightlyabovetheproducer.Inscheme‘B’,asinglehorizontalproducerandmultipleverticalcirculat-ingsteaminjectorswereinstalled.Scheme‘B’wasconsideredtomimictheconditioninwhichthesteamchambergrowslaterallyonlyandwasverysimilartothegeometryoftheButlermodel.TheyfoundthattheoriginalButlermodelisabletoreproducetheresultsofthetestwithscheme‘B’con?guration.OnlyTANDRAIN,amodi?edversioncouldbetterpredictthescheme‘A’con?gurationtest.Reis(1992)andAkin(2005)alsousedtheresultsofscheme‘B’tovalidatetheirmodels.
Fig.9showstheresultsofthemodelpresentedinthisstudycom-paredtothescheme‘A’data.TheparametersthathavebeenusedtorunthemodelarelistedinTable1.Closeagreementbetweenthelab-oratorytestdataandtheproposedmodel,revealstwonewaspectsofthismodel;(a)Unlikethepasttheories,thecurrentmodeldoesnotpredictaconstantvalueofoilrateanditisabletofollowthevariationoftheoilproduction.(b)Circulargeometrymodel,unlikeone-directionalmodels,isabletopredicttheresultsofarealSAGDgeom-etrytest.Howeverwemustemphasizethatonlytheinitialpartofthedataismatchedduetothefactthatboundaryeffectsarefeltintheex-perimentafter2handthecircularmodelthatisin?niteactingcannotproperlypredicttheprocess.
5.Modelvalidation:numericalsimulation
Experimentalvalidationinthelastsectioncon?rmedthatrunningtheproposedmodelwiththeexactvaluesreportedfromlaboratoryisabletomatchtheexperimentalmodel.Thismeansthatthemodeliscapableofworkingasa?owsimulatorforhistorymatchingpurposeswhileothermodelsmaynotbepowerfulenough.Toshowinghowthismodelcanbeutilizedasa?owsimulatortomatchthehistory,numericalanalysisresultshavebeencomparedtothecurrentmodel.
Anumericalsimulationisruntoproducesyntheticdataforcom-parison.MaterialpropertiesandotherrequireddataarelistedinTable2.Itisimportantthattheinformationinthetableisasmallpor-tionofthewholedataneededtorunanumericalsimulator.Inaddi-tion,Table2showsthenumberofparametersthatisrequiredforsimulationbythecurrentanalyticalmodel.
Forhistorymatching,relativepermeabilitycurveswereselectedastheunknownparameter.Thehistorymatchingwasthentrainedonthehistoryofoilproduction.Forthe?rstrun,arelativepermeabil-itycurve,commonforoilsands,asshowninFig.10wasselected.Aftereachrun,oilproductionhistorywascomparedtotheresultsofthenumericalmodelandamultiplierbetween0and1was
A.Azad,R.J.Chalaturnyk/JournalofPetroleumScienceandEngineering82-83(2012)27–3733
0200
0.20.40.60.811.21.41.61.82
Oil Rate, gr/hr
15010050
Butler-Like TheoriesThis Study
Chung and Butler Data
Cum. Oil Production, cc
300
Butler-Like TheoriesThis Study
Chung and Butler Data
200
100
Time, hr
Fig.9.ComparisonbetweentheexperimentaldatareportedbyChungandButler(1988).
selectedtomodifytherelativepermeability.Thetrialanderrorpro-cesswascontinueduntilcloseagreementwasfound.Sinceeachruntakes5sonly,thewholehistorymatchingprocesswasdonein5min.Althoughthe?nalrelativepermeabilitycurvewasnotquitethesameasthecurveusedinthenumericalanalysis,theaveragevaluewasthesame.ThisfeaturemayexplainwhyButlerchosetheaveragepermeabilitytobetheeffectiveparameterinhistheory.
Figs.11and12illustratethehistorymatchingprocess.AcloselookatFig.11clari?esthattheanalyticalmodelhasbeensuccessfulinpre-dictingthetrendofoilproductionfromtheverybeginningofthepro-cesswherethereisquickjumptothetimewhentheoilrateisdecreasing.Comparingthisabilityinthecurrentmodeltothecon-stantoilratepredictionbyButler-liketheoriescon?rmsthatthisnewmodelcanbeagoodtoolforfasthistorymatching.
ThenonlinearoilproductioncurveinFig.11hasbeencapturedbytheanalyticalsimulatorwhileButler-liketheoriesareincapableofpredictinganonlineartrend.Steaminjection,however,hasnotbeenpredictedwell.Theproblemismorelikelyduetothesimplicityofthetheoryusedforenergybalanceorthecomplexityoftheheatpropagationinthenumericalsimulator.
ThedashedhorizontallineinFig.11andthedashedstraightlineinFig.12havebeenincludedtobearepresentativeofButler-likemodels.AnyparallellinetothedashedlineinFig.11andanylinethatpassesthroughthecoordinateofthechartcanbematchedbychangingpermeability.Itmeansthatregardlessofthevalueofper-meability,thenatureofthesemodelsisnot?exibleenoughtobeusedasapracticalsimulator.Thesetwolinesshowtheinadequateca-pabilityofButlerorReismodelforhistorymatching.
Otherthanthemismatchbetweenthereporteddataandpre-dictedresultsforsteaminjection,steam/oilratio(SOR)plottedinFig.13isingoodagreement.ThedifferencebetweenSORsatthezonethathasthemostdivergence(from200to500days)isonly0.25inaverage.ThisdifferencewhenoriginalReismodelisemployedtopredictthesteaminjectionratecanvaryfrom1to10(dashedlineinFig.13).ThismeansthatthecirculargeometryandthemodelofsliceshaveimprovedtheanalyticalapproachtoSAGD.
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。