Unlikepasttheories,thisapproachcanconsiderrelativeperme-abilityvariationwithoilsaturationchanges.Themethodologydividesthereservoirintoseveralslices.Subsequently,thematerialbalanceiscalculatedforeachsliceinfrontofthesteamchamber.Eventually,theoilsaturationisupdatedduetotheoilproducedfromeachsliceateachspeci?ctime(orsteamchamberposition).
Whenthesteamchamberisataspeci?clocation,foreachsliceinfrontoftheseparationline,oilrateiscalculated.Itisassumed
that
Fig.2.Modelofslices,fromAzadandChalaturnyk(2010).Oneslicehasbeenplottedononesideofthesteamchamberasanexample.
A.Azad,R.J.Chalaturnyk/JournalofPetroleumScienceandEngineering82-83(2012)27–3729
Fig.3.GrowthofsteamchamberobservedduringphaseAofUTFproject(adoptedfromItoandSuzuki,1996).
thesteamchambermovesfromoneslicetotheotheronlywhenthecurrentoilsaturationofthe?rstfrontslicedeclinestoresidualoilsat-uration.Therefore,theremainingoilvolumeinthe?rstslicecanbeusedtocalculaterelativepermeabilityandthetimeneededtoproducetheoilfromthatslice.Thisisalsotherequiredtimeforthesteamchambertomoveon.
ThemodelproposedbyAzadandChalaturnyk(2010)originallyusesalineargeometryforsteamchamberslicesthatgrowslaterallyonly,assumingthatthesteamchamberhasreachedthecaprock.Theyshowedthatthisthemeisinadequatetopredictthe?rstand?nalstagesoftheprocess.Fig.3hasplottedthegrowthofsteamchamberobservedinUTFphaseA(ItoandSuzuki,1996).FromthetemperatureisolinesillustratedinFig.3,onemightpickacircularge-ometryforthesteamchamberratherthanastraightline.Itisalsore-quiredthatthegeometrybe?exibletocapturethegrowthofthesteamchamberbeforeandaftertouchingthecaprock.
LineargeometryandcirculargeometryofthesteamchamberinSAGDhavebeencomparedinFig.4.The?gureshowsthatthecirculargeometrycanbeabetteroptioncomparedtothelinearshapeofthesteamchamberbecauseitcanmimictheinitialstagesoftheprocess.Inaddition,inlongtimeperspective,thesteamchamberdoesnotneedtogetunrealisticshapetocoverfurtherreservoirregions.3.Analyticalmodelforcirculargeometry
Inthissection,theformulationofthecircularmodelispresented.Themodelhastwomajorelements:(a)thedrainagemodeland(b)theinjectionmodel.ThedrainagemodelisconstructedusingDarcy'slawthatexplains?owof?uidinporousmediabasedonpressure
gradientoveradistance.Darcy'slawisalinearmodelthatisvalidforlaminar?ows.ForSAGDprocess,thepotentialgradientisas-sumedtobegravity-basedandhence,Darcy'slawdeterminesthe?owfromanylocationabovetheinjectortowardtheproducer.Tocalculatetheviscosityofoilwhichishighlysensitivetotemperature,thedrainagemodelwithsomesimpli?cationemploystheone-dimensionaltheoryofheattransferincontinuummediaforanad-vancingfront.Extendingthistheoryfortheedgesofthesteamcham-bergrowinginthereservoir,viscosityvariationinadvanceofthesteamchamberisestimated.BasedontheDarcy'sandheattransferlawsthedrainagemodelisdeveloped.
Theheatingenergyrequiredtokeepthegrowthofthesteamchamberproducingtheoilratepredictedbythedrainagemodeliscalculatedwithintheinjectionmodel.Theinjectionmodelassumesthatfortheentiresteamchambertobemaintainedatthesteamtemperature,therequiredenthalpyhavetobesuppliedaslatentheat.Thethermalheatingisdominatedbythelatentheatfortrans-formationofsteamtowater.AppendixAprovidesfundamentalas-sumptionsandthebasictheoryadaptedfromButlermodel(Butler,1997).
3.1.Drainagetheory
Foracirculargeometry,differentpossiblesteamchamberloca-tionshavebeenplottedinFig.5.ItisassumedthattheSAGDprocessstartswhenthesteamchamberreachestheproducerborehole.Thishappensaftertheprimaryperiodofheatingor‘startup’phaseinwhichsteamisinjectedthroughbothinjectorandproducertoestab-lishcommunicationinbetweenboreholes.Therefore,the?rststeamchamber(‘Start’inFig.5)isthecirclewhosecenteristheinjectorboreholeanditsradiusisthewellspacing.Thiscircleappearsashorttimeafterthe‘startup’phase.Thebottompointatwhichthesteamchambertouchestheproducerboreholeisnow?xedandthesteamchambergrowswhileitslowerpointisattachedtotheproduc-erborehole.Thisisanassumptionthatwasmadebasedonprevious?eldobservation(e.g.,seeFig.3,theUTFphasesteamchambergrowth).Case‘A’occurswhenthesteamchamberhasnotreachedthecap-rock.Assoonasthesteamchambertouchesthecap-rocktheshapeisnotacompletecircleanymore.Twopossiblepositionsofsteamchambermayoccur:case‘B’whenthecenterofthecircleislocatedinsidetheoilsandlayerandcase‘C’wherethe
steam
Fig.4.Comparisonbetweenlinearandcirculargeometryofthesteamchamber.
30A.Azad,R.J.Chalaturnyk/JournalofPetroleumScienceandEngineering82-83(2012)27–37
Fig.5.Possiblepositionsforacircularsteamchamber.
chamberextendstotheoverburdenandthecenterofthecircleis
shiftedfromthereservoirformationtotheoverburden.
ThefoundationofthetheoryproposedbyButlerisDarcy'slawfor?owofoilshowninEq.(3).ThiscanbeappliedtoonesliceasshowninFig.6tofollowthemodelofslices,whererelativepermeabilityisestimatedfromcurrentoilsaturationoftheslice.ForSAGDprocess,itiscommontoconsidertwophasesonly,oil–water,neglectinganygascomingoutofsolutionduringtheSAGDprocess.Therefore,rela-tivepermeabilityofoilisapplicable:dqKoρo
t?
Kro?ΦdAe3T
where:dqt
differential?owofoilattimetKro
relativeoilpermeability
Fig.6.Modelofslicesforcirculargeometryofsteamchamber.
Koabsoluteoilpermeabilityρooildensityμoilviscosity
?Φ?owpotentialfunctiondAdifferentialarea.
AllthematerialpropertiesinEq.(3)arede?nedforthesliceonwhichcalculationiscarriedout.Ifoildensityisassumedconstant,vis-cosityhastobecalculated.ToestimateviscosityatdistanceξfromsteamchamberthatmoveswithvelocityequaltoUinamediumwhosethermaldiffusivityisα,ButlerproposedtouseEq.(4)inwhichmisaconstantbetween3and5andμosistheoilviscosityatthesteamchambertemperature.MoreexplanationaboutthesetworecentequationsisincludedinAppendixA.μeξT?
μosexp?mUξ
:
e4T
CombiningEqs.(3)and(4)yieldstoEq.(5)whereaisanother
constant.Reis(1992)recommends0.4forathatadjuststhemaxi-mumlocalvelocityofthesteamchamber.??dqKamU??
roKoρo?localξt?exp
?ΦdA:e5T
os
Incase‘A’whenDbHt,the?owpotentialfunctionandtheeffec-tiveareacanbeexpressedusingEqs.(6)and(7).Intheseequations,Drepresentsthediameterofanycirclelargerthanthediameterofsteamchamber(DSC).?Φ?
Dg20:5πD?g
e6TdA?e1:0Tdξ?dD:
e7T
Inallothercasesbasedonthede?nitionofXandDinFig.7,steamchamberparametersarecalculatedasfollows:????D??2??
D??2
??0:5X?2?Ht?
2e8T
??
θ?Sin
?1
X???1??2X
??D=2?SinD
:e9T
IfHt>D/2,then?owpotentialfunctionisstatedasinEq.(10);
otherwiseEq.(11)isthe?owfunction.Forbothcasesdξisthediffer-entialareaandalltheremainingparametershavebeenplottedinFigs.7and8.?Φ?
Htg2Htg
0:5eπ?θTD?
e10T?Φ?
Htg0:5θD?2Htg
:e11T
3.2.Materialbalance
Materialbalanceisappliedtoeachsliceinfrontofthesteamchamber.Considerthatthesteamchamberisataspeci?clocationanditmoveswiththelocalvelocity,Ulocal.UsingEq.(5),eachsliceoutsideofthesteamchamberproducesoil.Itisassumedthatthesteamchamberjumpsfromitscurrentlocation(n)tothenextlocation(n+1)whenalloftherecoverableoil?owsoutofthecur-rentslice.Therefore,basedonthematerialbalanceinthe?rstslice,
A.Azad,R.J.Chalaturnyk/JournalofPetroleumScienceandEngineering82-83(2012)27–3731
Fig.7.SteamchamberparametersforcasesB(left)andC(right).
thetimethattakestogettheresidualoilsaturationvaluecanbecalculated:
??Δt?
So;1?So;Rt;1
??:
e12T
sliceswithresidualoilsaturationconditionorwithinsigni?cant?owratearenotconsideredincalculation.3.3.Energybalance
Reis(1992)utilizedthelawofconservationofenergytocalculatetherequiredsteaminjectionintothereservoir.Withthesameap-proach,theinjectionrateperunitlengthofthehorizontalboreholecanbederived.mLs?eqs:ρwTLs?
d
eQtQoutTdtin
e14T
InEq.(12),So,1anddqt,1arethecurrentoilsaturationandoilrateoftheadjacentslicetothesteamchamberandSo,Ristheresidualoilsaturation.BasedonthetimecalculatedinEq.(12),oilsaturationinotherslices(i=1,2,3…n)isupdatedasfollows:So;i?So;i?
qt;iΔt
:e13T
where:Lsqs
speci?clatentheatofsteam
steaminjectionrate(involumeofwater)
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。