SˉadhanˉaVol.35,Part2,April2010,pp.129–137.?IndianAcademyofSciences
Ageneralizedrelationshipforswirldecayinlaminarpipe?ow
TFAYINDE
MechanicalEngineeringDepartment,KingFahdUniversityofPetroleumand
Minerals,Dhahran31261,SaudiArabia
e-mail:ayinde@kfupm.edu.sa
MSreceived24July2008;revised28January2010;accepted1February2010
Abstract.Swirling?owisofgreatimportanceinheatandmasstransferenhance-mentsandin?owmeasurements.Inthisstudy,laminarswirling?owinastraightpipewasconsidered.Steadythree-dimensionalaxisymmetricNavier–Stokesequa-tionsweresolvednumericallyusingacontrolvolumeapproach.Theswirlnumberdistributionalongthepipelengthwascomputed.Itwasfoundthattheswirlnumberatanylocationalongthepipelengthdependsontheswirlnumberatinlet,the?owReynoldsnumber,thedistancefromthepipeinlet,thepipediameterandthenatureoftheinletswirl.Ageneralizedrelationshipforswirldecayasafunctionoftheseparameterswasthenobtainedbycurve-?ttingtechnique.
Keywords.
freevortex.
1.Introduction
Theconceptofswirling?owinapipeisimportantbecausetherearenumerousapplicationsinwhichswirliseitherdesiredoritisanuisance.Theuseofswirl?owhasbeenrecognizedasoneofthemostpromisingtechniquesforheattransferaugmentation(Chang&Dhir1995,Bali1998,Li&Tomita1994)aswellasmasstransferenhancement(Yapicietal1994).Ontheotherhand,swirliscreditedwithcausingsigni?canterrorsin?owmeasurementsemployingori?ceplates,nozzles,andventuritubes(Reader-Harris1994,Parchen&Steenbergen1998).Chang&Dhir(1995)experimentallyinvestigatedheattransferenhancementresultingfromintroductionofswirl.Theirresultsshowedthattheheattransfercoef?cientincreasedwithswirlintensity.Thiswasattributedtothehighmagnitudeofmaximumaxialvelocitynearthewall(whichproducedhighrateofheat?uxfromthewall)andhighturbulencelevelinthemiddleregion(whichimproved?owmixing).Similarly,Bali(1998)reportedheattransferenhancement,aswellashigherpressuredrop,inthe?owwhenswirlwasintroduced.Li&Tomita(1994)experimentallyobtainedcorrelations,intermsofswirllevel,forstatic,dynamicandwallpressures.
Inspiteofthesigni?canceofswirlingpipe?owinsomeindustrialprocesses,therearenocleargeneralizedmethodsintheliteraturetocomputethedecayofswirl.Whiletheauthors
129Laminarpipe?ow;axisymmetric;swirlnumber;forcedvortex;
130TF
Ayinde
Figure1.Aschematicviewofthepipeshowingthecoor-dinatesystemandthecomputa-tionaldomain(hatchedplane).
Li&Tomita(1994);Parchen&Steenbergen(1998)correlatedtheobtainedswirldecayasafunctionofaxialpositionnormalizedbypipediameteronly,Reader-Harris(1994)arguedthatswirlwasalsoafunctionofthepipefrictionfactor.Inordertoobtainageneralizedrelationshipforswirldecayinlaminarpipe?ow,numericalcomputationsareperformedforfourdifferenttangentialvelocitydistributionsatpipeinlet,fourdifferentlevelsofinletswirlnumbersandawiderangeofReynoldsnumber(inthelaminarregime).Suchageneralizedformulacanbeusedasinputintheexistingcorrelationsforheattransferenhancementinpipe?ow(Chang&Dhir1995,Bali1998,Li&Tomita1994).Itcanalsoserveasapredictivetoolfordeterminingthedownstreamlocationwheretheswirlwouldhavereducedtosuchanacceptablelevelthat?owmeasurementcanbeperformedwithstandard?owmeteringdevices.
2.Mathematicalmodelling
2.1Flowdomain
Thesteadylaminarincompressibleandaxisymmetric?owinastraightconstant-diameterpipeisconsidered.Theschematicviewofthecomputationaldomainisshownin?gure1.Thepipelengthanddiameterareselectedas6·4mand80mmrespectively,givingalength-to-diameterratioofL/D=80.
2.2Governingequations
Thegoverningequations,incylindricalcoordinatessystem,areasfollows:
Continuityequation:?VV?U++=0.?x?rr
Themomentumequationinthexdirection:
????21?U?U1?p?U?2U?U.++V=?+ν+U?x?rρ?x?x2r?r?r2
Themomentumequationintherdirection:
?VW21?p?V+V?=?+νU?x?rrρ?r??1?V?2V?2VV+?+?xr?rr?r??.(3)(1)(2)
Ageneralizedrelationshipforswirldecayinlaminarpipe?ow
Themomentumequationintheφdirection:
??2???WVW?WW1?W?2W?W+V+=ν?2+.+U?x?rr?x2r?rr?r2
2.3Boundaryconditions131(4)
Atinlet,aswirlcomponentissuperimposedonPoiseuille?ow.Theswirlisformedthroughacombinationofforcedvortexinthecoreandfreevortexintheannulus.Thisissimilartothedistributionsthatwereexperimentallyrealizedinthepreviousstudies(Bali1998,Parchen&Steenbergen1998).Thus,theboundaryconditionsatpipeinlet(x=0)are:
????r??2??.(5)U(0,r,φ)=Umax1?R
V(0,r,φ)=0.
??(6)
(7)Wmaxtrans,r<rtrans????W(0,r,φ)=,r≥rtrans.Wmaxtrans
Inequation(7),rtransistheradiallocationatwhichtransitionfromforcedtofreevortextakesplace.Thebracketedterminthefreevortexvelocitydistributionisincludedtoensurethatthevelocitygoestozeroonthepipewall.
Atexit(x=L),afully-developed?owconditionwasassumed.Thenoslipcondition(U=V=W=0)wasimposedatthepipewall.
2.4Swirlanalysis
Asuitablemeasureoftheswirlinpipe?owistheswirlnumber,de?nedastheratioofthetotal?uxofangularmomentumtotheaxialmomentum?ux(Bali1998,Parchen&Steenbergen1998).Itisexpressedasfollows:
??R2π0U(rW)rdr.(8)S=2πR3Uav
3.Methodofsolution
Thedynamicsofcon?nedswirl?owisacomplexonebecauseoftheco-existenceoftheaxialandtangentialcomponentsofvelocitiesatanypointofthe?ow?eldandtheboundarylayersatwallarethree-dimensional.The?owisthereforenoteasilyamenabletoanalyticalsolution,exceptinthecoreregionwherethe?owcanbeconsideredtobeinvscid.Here,applicationofEuler’sequation(Croweetal2005)showsfavourablepressuregradienttowardsthevortexcenter.Thisresultsintheaccelerationoftheradial?owtowardsthecenter,which,inturn,leadstodecelerationoftheaxial?owinordertosatisfycontinuityequation.Asthestrengthoftheswirlweakensdownstreamduetoviscousdissipation,theoriginalPoiseuillepro?leoftheaxial?owisgraduallyrecovered.
Themodelequations1–7weresolvednumerically.Duetotheaxisymmetric?owsituation,thecomputationaldomainbecomestwo-dimensionalandthesymmetryaxispassesthrough
132TFAyinde
thepipecenterasshownin?gure1.Arectangulargridsystemwasemployedandthegrid-independencetestwasconducted,whichyieldedagridindependentsolutionfor40×600gridpoints.
Computationwasmadeusingthe?nitevolumemethod.Astaggeredgridarrangementwasusedinordertopreventa‘checkerboard’pressure?eld(Patankar1980,Versteeg&Malalasekera1995).TheSIMPLEalgorithm(Patankar1980,VersteegandMalalasekera1995)wasusedtoobtainthenumericalsolution.
DifferentinletswirlnumberswererealizedbyvaryingthevaluesofWmaxinequation(7).Theeffectofthenatureoftheinletswirldistributionwasinvestigatedbyvaryingthevalueofrtrans.
4.Resultsanddiscussions
Inthepresentstudy,thedecayofswirlinlaminarpipe?owwasinvestigatednumerically.Thepipedimensionswereselectedas80mmdiameter,6·4mlength.Computationswereper-formedforsixdifferentReynoldsnumbers(Re=of800,1000,1200,1400,1600,1800)andfourinletswirlnumbers(So=0·5,1·0,1·5,2·5),withfourdifferentinlettangentialvelocitydistributions(rtrans/ro=0·5,0·6,0·75,0·9).Intheresultstobepresentedin?gures2–6,thesymbolsareincludedforvisualaidonly;theydonotrepresentthenumberofnodesusedinthecomputations.
TheaxialvelocitydistributionsinthepipeforswirlnumberSo=1·0,Re=1000andrtrans/ro=0·75arepresentedin?gure2,whereitisrevealedthatthefully-developed(Poiseuille)velocitydistributionatinletisaltereddownstreamduetotheintroductionofswirl.Thisisconsistentwiththeobservationmadeatthebeginningofsection3.The?owgraduallyrecoversfromthedestabilizingeffectofswirl(occasionallybyadversepressuregradientintheaxialdirection)andtheinitialpro?leisalmostfullyrecoveredatthepipe
exit.
Figure2.Axialvelocitydistri-butionsinthepipeforSo=1·0,Re=1000andrtrans/ro=0·75.
Ageneralizedrelationshipforswirldecayinlaminarpipe?ow
133
Figure3.Tangentialvelocitydis-tributionsinthepipeforSo=1·0,Re=1000andrtrans/ro=0·75.
SimilartrendsareobtainedforothervaluesofSo,Reandrtrans/robutarenotshownhere.Theactualfully-developedpro?lewillberecoveredonlyiftheswirlcompletelydisappearsandthisrequiresanin?nitelylongpipe.Apreliminaryinvestigationrevealedthatthecom-putedswirldecay,whichisthesubjectofthisstudy,isnotaffectedbythe?nitelengthofthecomputationaldomainifL/D>60.ThevalueofL/D=80usedinthisstudyisthereforeconsideredtobe
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。