adequate.
Figure4.DecayoftheswirlnumberalongthepipeforSo=1·0andrtrans/ro=0·75.
134TF
Ayinde
Figure5.DecayoftheswirlnumberalongthepipeforRe=1000andrtrans/ro=0·75.
Figure3showsthedistributionsofthetangentialvelocityinthepipe.TheFigurerevealsthatasthe?owprogressesdownstream,theswirldecays,thecoreregion(forforcedvortex)shrinkswhiletheannularregion(forfreevortex)expandsThistrendwasalsoreportedbyChang&Dhir(1995)andBali(1998)forturbulentswirling?ow.
Thevariationoftheswirlnumberalongthepipelengthisshownin?gure4forReynoldsnumbersfrom800to1800andSo=1·0.Itcouldbeseenfromthe?gurethatafteran
initial
Figure6.DecayofswirlalongthepipeatRe=1200andSo=1·0fordifferentdistributionsofinlettangentialvelocity.
Ageneralizedrelationshipforswirldecayinlaminarpipe?ow135rapiddecayoftheswirl,itthencontinuestodecayexponentiallytowardsthedownstream.The?gurealsoshowsthattherateofdecaydecreasesastheReynoldsnumberincreases.TheswirldecayatRe=1000forfourlevelsofinletswirlnumbersareshownin?gure5.The?gureshowsthattheswirlnumberatpipeinletdoesnotaffecttheswirldecayrate,butitsmemorypersistsinde?nitely.Figure6showsthedecayofswirlalongthepipefordifferentinlettangentialvelocitydistributions.Here,itisrevealedthattheswirlnumberatanydownstreamlocationdependsonthenatureoftheinlettangentialvelocitydistribution.From?gures4to6itisapparentthataftertheinitialnon-lineardecay,theswirldecayslinearlyonasemi-logplot.Thislinearportionisfoundtobestartingatx/D=16inalltheinletconditionsaccommodatedinthesimulations.Theswirldistributioncan,therefore,bemodelledintheformgivenbelow:
ln(S/So)=lnC?mx/D.(9)Byusinglinearregressionanalysis(Montgomery1997),theconstantsCandmweredetermined.ItwasfoundedthatmisafunctionofReonlyanditsvariation?tsonapowerfunction.CvarieswithSo,Reandrtrans/ro.ForeachpairofRe,rtrans/ro,thedependenceofConSowasinvestigated,andapowerfunctionwaschosenasthebest?t.TheconstantsinthepowerfunctionweremodelledascombinationsoflinearfunctionsofReandrtrans/ro.Theseweredeterminedbylinearregression.Theequationforswirldecayis,therefore,presentedasfollows:
S/So=Ce?mx/D
wheremandCarede?nedas
m=25Re?0·92
BC=ASo.(10)(11)(12)
(13)
(14)A=7×10?5Re?0·78(rtrans/ro)+1·2.B=2×10?5Re?0·17.
Startingfromx/D=16,theswirldistributionde?nedbyequations(10)–(14)hasbeenfoundtomatchtheresultsofournumericalcomputation(forallSo,Reandrtrans/ro)toamaximumerrorof1%.
5.Conclusions
Theswirldecayinlaminarpipe?owwithinletswirlhasbeenexaminedthroughanumericalcomputationofthe?ow?eldforfourdifferentinletswirlnumbers,sixvaluesofReynoldsnumberandfourdifferenttangentialvelocitydistributionsatpipeinlet.Theswirlnumberdistributionalongthepipewascomputed.Ageneralizedrelationshipforswirldecaywasthenobtainedbycurve-?ttingtechnique.Thespeci?cconclusionsderivedfromthepresentstudymaybelistedasfollows:
(i)Theintroductionofswirlintoafully-developedlaminarpipe?owdistortstheusualparabolicvelocitypro?leinthepipe.Thepro?leisgraduallyrecoveredasswirldecaystowardsdownstream.
136TFAyinde
(ii)Fromthetangentialvelocitypro?le,theswirl?owcanbedividedintoacoreregionand
anannularregion,characterizedbyforced-vortexandfree-vortextypes,respectively.Asthe?owprogressestowardsthedownstream,thecoreregionshrinks(reducesinsize)whiletheannularregionoffreevortexexpands.
(iii)Theswirlnumberatanylocationinthedownstreamdependsontheinletswirlnumber,
the?owReynoldsnumber,thedistancefromthepipeinlet,thepipediameterandthenatureoftheinlettangentialvelocitydistribution.Theswirldecaysexponentiallyalongthepipelengthstartingfromx/D=16.Thedecayiscorrelatedwithageneralizedrelationshipasde?nedbyequations(10)–(14).
ThesupportprovidedbytheKingFahdUniversityofPetroleumandMineralsincompletingthisworkisacknowledged.TheauthorisindebtedtoProf.BSYilbasforhisencouragementandguidancethroughoutthework.
Listofsymbols
DLPRrRe
SUVWxPipediameter[m]Pipelength[m]Pressure[Pa]Piperadius[m]radialcoordinate[m]Reynoldsnumber(=UD/ν)Swirlnumberaxialvelocitycomponent[m/s]radialvelocitycomponent[m/s]tangentialvelocitycomponent[m/s]axialcoordinate[m]
Greeksymbols
φ
ρνcircumferentialcoordinate?uiddensity[Kg/m3]
kinematicviscosity[m2/s]
Subscripts
av
max
o
transaveragemaximuminlettransitionpoint(fromforcedtofreevortex)
References
BaliT1998Modellingofheattransferand?uid?owfordecayingswirl?owinacircularpipe.Int.Comm.HeatMassTransfer25(3):349–358
Ageneralizedrelationshipforswirldecayinlaminarpipe?ow137ChangF,DhirVK1995Mechanismsofheattransferenhancementandslowdecayofswirlintubesusingtangentialinjection.Int.J.HeatFluidFlow16(2):78–87
CroweCT,ElgerDF,RobertsonJA2005Engineering?uidmechanics.(USA:JohnWiley),8thEd.113P
LiH,TomitaY1994Characteristicsofswirling?owinacircularpipe.J.FluidsEng.116:370–373MontgomeryDC1997Designandanalysisofexperiments(NewYork:JohnWiley)4thEd.
ParchenRR,SteenbergenW1998Anexperimentalandnumericalstudyofturbulentswirlingpipe?ows.J.FluidsEng.120:54–61
PatankarSV1980Numericalheattransferand?uid?ow.McGraw-Hill,NewYork
Reader-HarrisMS1994Thedecayofswirlinapipe.Int.J.HeatFluidFlow15(3):212–217
VersteegHK,MalalasekeraW1995Anintroductiontocomputational?uiddynamics:the?nitevolumemethod.(England:Longman)
YapiciS,PatrickMA,WraggAA1994Hydrodynamicandmasstransferindecayingannularswirl?ow.Int.Comm.HeatMassTransfer21:41–51
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。