biosurfactant
322ApplBiochemBiotechnol(2008)150:305–325productioncanbedividedintothreecategories:carbohydrates,hydrocarbons,andvegetableoils.Inthisstudy,thecarbonsourcestestedwerecarbohydratesources(D-glucose,D-fructose,sucrose,maltose,lactose,galactose,D(+)-mannose,D-sorbitol,glycerol,glucosesyrup,molasses,andmaltextract),vegetableoils(soybeanoilandoliveoil),andfinally,hydrocarbons(hexadecaneandparaffinoil).
Inthisstudy,theresultsrevealedthatmolassesisthebestcarbonsourceforsurfactinproductionandgrowth(Fig.6).However,sucrose,maltose,D-sorbitol,andmaltextractgavelevelsofsurfactinandcellgrowthcomparabletothoseofglucose.Thesugars,lactoseandgalactose,sharplyinhibitedbacterialgrowthandresultedinlowersurfactinproductivitiescomparedtoglucose.Growthandsurfactinproductionincreasedremarkablycomparedtoglucoseandsteadilybyincreasingmolassesconcentrationupto16g%(Fig.7c),however,maltextractat4g%showedbiosurfactantproductivitycomparabletothatofglucose;thisfindingisverypromisingbecausebothmolassesandmaltextractarecheaperandpromisingalternativestoglucose.
Itisworthytonotetheinhibitoryeffectofvegetableoils(soybeanoilandoliveoil)andhydrocarbon(hexadecaneandparaffinoil)onsurfactinproduction(Fig.6),althoughitwaspostulatedthathydrocarbonsenhancetheproductionofbiosurfactantsbybacteria[33].However,manyauthorsdocumentedthat,unlikethemicroorganismsproducingglycolipid,polymeric,orfattyacidtypebiosurfactants,Bacillussp.requiresonlycarbohydratestoproducelipopeptide-typebiosurfactant[34,35,36,37,38].Thefactthatsomebiosurfactantsareproducedevenwhenthecellsarenotgrownonhydrophobicsubstratessuggeststhattheirfunctionisnotsolelyrestrictedtothestimulationofsubstrateavailabilitybuttheyperformotherdefensiveandbiologicalfunctions[39].
Therefore,attheendofthisstudy,thehighestsurfactinproductionbythisBacillusisolateBS5canbeachievedbytheuseofmolassesat160ml/lforB.subtilisisolateBS5.Alternativecarbonsourcescanalsobeeffectivelyusedforhighsurfactinproduction;theseincludemaltextract(40g/l)andglucose(40g/l).
Thenitrogensourceplaysanimportantroleintheproductionofsurface-activecompoundsbymicroorganisms[21].Inthisstudy,thenitrogensourcestestedwereorganic(ammoniumoxalate,urea,yeastextract,peptone,tryptone,andcornsteepliquor)andinorganicsources(sodiumnitrate,potassiumnitrate,ammoniumnitrate,ammoniumchloride,ammoniumbromide,ammoniumcarbonate,andammoniumsulfate).
Inthisstudy,itwasfoundthatsodiumnitratewasthebestnitrogensourceforsurfactinproductionbyBacillusisolate(Fig.8).However,othertestednitrogensourcesdecreasedsurfactinproductionwithdifferentdegreesandsuchdecreasewasmorepronouncedincaseofproteinsources.
Noadvantagewasgainedconcerningsurfactinproductionbytheuseofaminoacids,althoughglutamicacidgavesurfactinproductivitycomparabletothatofsodiumnitrateintermsofactivityonly(Fig.10).Similarresultswerereportedwheredifferentaminoacidsdidnotshowanynotabledifferenceinsurfactinproductionwhentheywereseparatelyaddedtotheculturemedium[40].Althoughtheapproachwasdifferent,similarresultswerealsoreportedbyCooperetal.[6].Theyreportedthatnoimprovementinsurfactinproductionwasobtainedwhenamixtureofalloftheaminoacidsenteringinthestructureofthesurfactinlipopeptidewasaddedtothemedium.Whentheeffectofglutamicacidonsurfactinproductionwasfurtherstudiedatdifferentconcentrations,maximumsurfactinproductionandmaximumbacterialgrowthwereobtainedat1g%(Fig.11).However,thelevelofsurfactinproductionatthisconcentration(1g%glutamicacid)wasstillcomparable(intermsofactivity)tothatproducedbysodiumnitrateatitsoptimumconcentration(0.5g%).Theuseofglutamicacidasthesolenitrogensourcewaspreviouslyreportedbysomeauthors[41].
ApplBiochemBiotechnol(2008)150:305–325323Therefore,attheendofthisstudy,thehighestsurfactinproductionbythisBacillusisolateBS5canbeachievedbytheuseofsodiumnitrateat5g/l.Alternativenitrogensourcescanalsobeeffectivelyusedforhighsurfactinproduction;theseincludeglutamicacid(10g/l),ammoniumoxalate(10g/l),andammoniumnitrate(5g/l).
Thestudyoftheeffectofsomeinorganicsaltsormineralsrevealedthatgrowthandsurfactinproductionweregreatlyenhancedinthepresenceofthefollowingmultivalentcations:zinc,iron(II),iron(III),andmanganese(II)at0.1mMconcentrations(Fig.13)withiron(III)showingbetterresultsthaniron(II)intermsofsurfactinproduction.Theobservedstimulatoryeffectofiron(II)andiron(III)ongrowthandsurfactinproductionbyaBacillusspecieswaspreviouslyreportedbyWeiandChu[42].TheyrecommendedraisingironconcentrationsfromthemicromolartothemillimolarleveltogreatlyenhancethesurfactinproductionfromB.subtilisATCC21332.In2002,thesameauthorsreportedthatagreatenhancementofsurfactinproductivitywasobtainedbyaddingmanganese(II).Itisestablishedthatthismetalisa“key”metalfortheproductionofsecondarymetabolitesbyBacillusspecieswithouthavinganeffectoncellgrowth[6].
Concerningtheinhibitoryeffectofmetalions,Cu2appearedtobethemostpotentinhibitorofbothgrowthandsurfactinproductionbythetestisolate(Fig.13);thisfindingwasinagreementwiththatreportedbyWeiandChu[43].
Consequently,anumberoftraceelementscouldbeusedforoptimumsurfactinproductionbythetestisolate.ThesetraceelementswereZnSO4(1.0mM),FeCl3·6H2O(1.0mM),andMnSO4·H2O(0.1mM).
Basedontheresultsaccumulatedfromthepreviousstudyonnutritionalelementsandmediacomponentsaffectingsurfactinproduction,modifiedmediawereformulated.Thesemediacombinedtheoptimumelementsselectedfromeachnutritionalcategory,i.e.,carbonandnitrogensourcesaswellastraceelements.Amongthedifferentformulatedmedia,MMSM,whichcontainedoptimumcarbonsource(molasses160ml/l),optimumnitrogensource(NaNO35g/l),andoptimumtraceelementsachievedobviousincreaseinsurfactinproductivityofaboutthreefoldcomparedtoMSM.
TimeCourseofSurfactinProductionbyBacillusIsolateBS5inMMSM
ItwasnecessaryattheendoftheoptimizationphasetoredeterminetheoptimumincubationperiodrequiredformaximumgrowthandsurfactinproductioninMMSM.Thisisbecausetheoptimumincubationperiodformaximumsurfactinproductionmayprobablydifferinthemodifiedmediumfromthoseinthebasalmedium(MSM).Theresults(Fig.16)showednearlysimilarprofilestothoseobtainedinMSM(Fig.1)whereproductionwasgrowth-associated,however,ashorterincubationperiodwasrequiredinMMSM.DetectionofPlasmid(s)anditsRelationtoSurfactinProduction
Neitherhighnorlowmolecularweightplasmidswereobservedinthetestisolatebythetechniqueused(Fig.17).Thus,itcanbeconcludedthatthesurfactin-codinggeneislocatedinthechromosomalDNAofthetestedisolateandnotplasmid-associated.Similarly,studiesconductedbyFlecketal.[44]onbiosurfactantproductionbyB.subtilisB1andPseudomonasaeruginosaP1showedthatnoneofthestrainspresentedplasmids,eitherofloworhighmolecularweights.TheyconcludedthatthecodinggenesforbiosurfactantproductionarelocatedinthechromosomalDNA.Thisfindingmaybeadvantageousfromtheindustrialpointofviewbecauseoneofthemajordrawbacksthatpreventaproducingbacteriumfrombeingacandidateindustrialstrainisgeneticinstability.Geneticinstability
324ApplBiochemBiotechnol(2008)150:305–325and,consequently,fluctuationofproductionleveliscommonlyencounteredamongstrainsthathavetheproductiongenescarriedonplasmids.
AcknowledgementsTheauthorswouldliketothankDr.KhaledAbou-Shanab,alecturerofMicrobiologyandImmunology,FacultyofPharmacy,AinShamsUniversity,Cairo,Egypt,forkindlyprovidingthestandardE.coliDH5α/pUC18andgivingadviceonplasmiddetectioninthetestedisolate.
References
1.Makkar,R.S.,&Cameotra,S.S.(1999).Biosurfactantproductionbymicroorganismsonunconventionalcarbonsources.JournalofSurfactantsandDetergents,2,237–241.
2.Sanchez,M.,Teruel,J.A.,Espuny,M.J.,Marques,A.,Aranda,F.J.,Manresa,A.,etal.(2006).ModulationofthephysicalpropertiesofdielaidoylphosphatidylethanolaminemembranesbyadirhamnolipidbiosurfactantproducedbyPseudomonasaeruginosa.ChemistryandPhysicsofLipids,142,118–127.
3.Banat,I.M.(1995).Biosurfactantsproductionandpossibleusesinmicrobialenhancedoilrecoveryandoilpollutionremediation:areview.BioresourceTechnology,51,1–12.
4.Desai,J.D.,&Banat,I.M.(1997).Microbialproductionofsurfactantsandtheircommercialpotential.MicrobiologyandMolecularBiologyReviews,61(1),47–64.
5.Nitschke,M.,&Pastore,G.M.(2004).BiosurfactantproductionbyBacillussubtilisusingcassava-processingeffluent.AppliedBiochemistryandBiotechnology,112(3),163–172.
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。