FromFig.7aandb,itwasfoundthattheoptimumconcentrationsofglucoseandmaltextractforbiosurfactantproductionandgrowthwere2to4g%forglucoseand4g%formaltextract.Inthecaseofmolasses,bothsurfactinproductionandgrowthincreasedsteadilybyincreasingmolassesconcentrationupto16%v/v(Fig.7c).EffectofNitrogenSources
AsshowninFig.8,sodiumnitratewasthebestnitrogensourceforsurfactinproduction.However,othertestednitrogensourcesdecreasedsurfactinproductionwithdifferentdegreesandsuchdecreasewasmorepronouncedincaseofproteinnitrogensources.Itwasobservedthatsurfactinproductivityintermsofsurfactinactivitymayormaynotcoherentlycorrelatewiththatintermsofsurfactinconcentration.Regardingbacterialgrowth,theeffectofnitrogensourceswaseithercomparabletothatofsodiumnitrateorcausedsomedegreesofinhibition.
Fig.4EffectofinitialpHongrowthandsurfactinproduction(intermsofconcentrationandactivity)byB.subtilisisolateBS5inMSM
Biomass (g%)
3.002.752.50
78
2.001.751.501.251.000.75
Crude surfactin conc (g/L)
2.25
6
5
4
0.500.250.003
2
pH
Clear zone diameter by OST (cm) Clear zone diameter (cm)
Biomass (g%)
ApplBiochemBiotechnol(2008)150:305–325Fig.5Effectofincubationtem-peratureongrowthandsurfactinproduction(intermsofconcen-trationandactivity)byB.subtilisisolateBS5inMSM.SurfactinactivitywasmeasuredusingtheclearzonediameterasdeterminedbytheOST
1.81.71.61.5
4.05.04.5
313
Crude Surfactin conc (g/L)
1.41.31.21.11.00.90.8
Biomass (g%)
o
3.53.02.52.01.51.00.5
0.70.60.5Incubation Temperature (C)
Assodiumnitrateprovedtobethebestnitrogensourceforsurfactinproduction,itseffectwasfurtherstudiedatdifferentconcentrations(Fig.9a).Inaddition,thetwoothernitrogensources(ammoniumnitrateandammoniumoxalate),whichshowedcomparablesurfactinproductivityand/orsurfactinconcentration,weresimilarlystudied(Fig.9bandc).TheresultsinFig.9arevealedthatthehighestsurfactinproductivitieswereachievedat0.5–1g%sodiumnitrateconcentration,however,thehighestbiomassvalueswereobtainedat0.25–2.5g%.Figure9bandcalsoshowsthattheoptimumconcentrationsofammoniumnitrateandammoniumoxalatethatproducedthehighestgrowthandsurfactinproductionwere0.25–1g%forammoniumnitrateand1g%forammoniumoxalate.EffectofSomeStructuralAminoAcidsonSurfactinProductioninMSM
TheresultsshowninFig.10revealedthatnoenhancementofsurfactinproductionwasgainedbytheuseofaminoacids,eitherthoseaddedtoMSMat0.1M(D,L-leucine,L
-1.210.80.60.40.20
annoseD-SorbitolGlyGcerlucoolse syrupMolasseMsalt extraSocy betan oilOlive Hoiexlad
ecanPaeraffin oil
ose
ose
cos
to
to
Sucr
ct
uc
La
ac
lu
al
tose
e
se
se
4.54
Biomass (g%) ; Crude surfactin conc (g/L)
3.532.521.510.50
-g
M
-fr
al
D
(+
) M
D
G
D
Fig.6Effectofdifferentcarbonsourcesongrowthandsurfactinproduction(intermsofconcentrationandactivity)byB.subtilisisolateBS5inMSMafter72hincubation.SurfactinactivitywasmeasuredusingtheclearzonediameterasdeterminedbytheOST
Clear zone diameter (cm)
Clear zone diameter(cm)
314
Fig.7Effectofdifferentcon-centrationsofaglucose,bmaltextract,cmolassesongrowthandsurfactinproduction(intermsofconcentrationandactivity)byB.subtilisisolateBS5inMSMafter72hincubation.SurfactinactivitywasmeasuredusingtheclearzonediameterasdeterminedbytheOST
ApplBiochemBiotechnol(2008)150:305–325
5.0
2.00
4.5
1.751.501.251.000.750.50
4.0
Crude S
urfactin conc (g/L)
3.53.02.52.01.51.00.50.0
0.250.00
Glucose conc (%w/v)
1.5
1.41.31.11.00.90.80.70.60.50.40.30.20.10.01.2
3.0
Biomass (g%)
2.0
1.5
1.0
0.5
0.0
Malt Extract (% w/v)
1.5
1.41.31.2
76
Crude Surfactin conc (g/L)
Biomass (g%)
1.0
0.90.80.70.60.50.40.30.20.10.0
543210
Molasses (% v/v)
asparticacid,L-valine)orthatusedinreplacementofsodiumnitrateinMSM(glutamicacidat0.432g%)althoughthelatterwasrelativelylessinhibitorybetterthanothertestedaminoacids.However,whentheeffectofglutamicacidonsurfactinproductionwasfurtherstudiedatdifferentconcentrations,maximumsurfactinproductionandbacterialgrowthwereobtained
Clear zone diameter (cm)
1.1
Clear zone diameter by OST (cm)
2.5
Crude Surfactin conc (g/L)
Clear zone diameter (cm)
Biomass (g%)
ApplBiochemBiotechnol(2008)150:305–325315Fig.8Effectofdifferentnitrogensourcesongrowthandsurfactinproduction(intermsofconcentrationandactivity)byB.subtilisisolateBS5inMSMafter72hincubation.SurfactinactivitywasmeasuredusingtheclearzonediameterasdeterminedbytheOST
at1g%(Fig.11).Thelevelofsurfactinproduction(intermsofactivity)atthisconcentration(1g%glutamicacid)wascomparabletothatproducedbysodiumnitrateat0.5g%(Fig.9a).EffectofMultivalentCationsAsshowninFig.12,itisclearthatMg++isessentialforgrowthasitsremovalwasaccompaniedbyasubstantialreductioninmicrobialgrowth.However,Ca++wasnotasessentialasMg++becauseitsremovalwasnotaccompaniedbyasignificantchangeinbacterialgrowth.Therefore,amodifiedMSM(glucose–magnesiummedium)thatwasdevoidoftheTESandCa++wasusedforstudyingoftheeffectoftheadditionofdifferentmultivalentcations.
EffectoftheAdditionofMultivalentCationstotheGlucose–MagnesiumMedium
AsshowninFig.13,growthandsurfactinproductionbyB.subtilisisolateBS5weregreatlyenhancedinthepresenceofthefollowingmultivalentcations:zinc,iron(II),iron(III),andmanganese(II)at0.0001Mconcentrations.Regardingsurfactinproduction,iron(III)showedbetterresultsthaniron(II).Othermultivalentcationscausedeithercomparableresultstothatofthecontrolorresultedindifferentdegreesofinhibitionofbothgrowthandsurfactinproduction.Thesecations(Zn,ironIII,Mn)togetherwithmagnesium(whichprovedtobeessentialforbacterialgrowth)werefurtherevaluatedatdifferentconcentrationstofindouttheoptimumconcentrationsofeach(Fig.14a–d).
TheresultsplottedinFig.14a–dshowthattheoptimumconcentrationofzincsulfate,ferricchloride,andmagnesiumsulfateformaximumbiosurfactantproductionis1mM,however,thatofmanganesesulfateis0.1mM.
BiosurfactantProductionbyB.subtilisIsolateBS5inDifferentModifiedMineralSaltsMedia
FromFig.15,itisclearthatthemediumcontainingtheoptimumminerals(M1)increasedsurfactinproductivityoverthatinMSM.Themedium(M2)thatcombinedboth
optimum
316
Fig.9Effectofdifferentcon-centrationsofasodiumnitrate,bammoniumnitrate,
cammoniumoxalateongrowthandsurfactinproduction(intermsofconcentrationandactivity)byB.subtilisisolateBS5inMSMafter72hincubation.SurfactinactivitywasmeasuredusingtheclearzonediameterasdeterminedbytheOST
ApplBiochemBiotechnol(2008)150:305–325
1.00.90.8
5.04.54.0
Crude surfactin conc (g/L)
0.70.60.50.40.3
3.53.02.52.01.51.00.50.0
0.20.10.0
NaNO3 Conc (g%w/v)
0.70.60.50.40.3
1.00.90.8
4.003.753.503.253.002.752.502.252.001.751.501.251.000.750.500.250.00
Crude surfactin conc (g/L)
0.20.10.0
NH4NO3 conc (% w/v)
0.50
6.05.55.0
0.450.40
Crude Surfactin conc (g/L)
Biomass (g%)
0.350.300.250.200.15
4.03.53.02.52.01.51.00.50.0
0.100.050.00
Ammonium oxalate conc (% w/v)
traceelementsandoptimumnitrogensourcetogetherdidnotsignificantlyincreasesurfactinactivityandbacterialgrowth.Itisinterestingtonotethatupontheapplicationofoptimumtraceelements,nitrogensource,andcarbonsource(M3),theireffectstogetherweresodramatic.Anincreaseinsurfactinproduction(intermsofsurfactinconcentrationorsurfactinactivity)ofaboutthreefoldwasreached(ifcomparedwithMSM).ThisoptimumM3medium,whichcontainedoptimumcarbonsource(molasses160ml/l),optimumnitrogensource(NaNO35g/l),andoptimumtraceelements,wasdesignatedasmolassesMSM(MMSM).
Clear zone diameter (cm)
4.5
Clea
r zone diameter (cm)
Biomass (g%)
Clear zone diamete
r (cm)
Biomass (g%)
ApplBiochemBiotechnol(2008)150:305–325Fig.10Effectofdifferentaminoacidsongrowthandsurfactinproduction(intermsofconcen-trationandactivity)byB.subtilisisolateBS5inMSMafter72hincubation.SurfactinactivitywasmeasuredusingtheclearzonediameterasdeterminedbytheOST
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。