1.1《两个基本原理》课件(新人教A版选修2-3)

 

问题一:从甲地到乙地,可以乘火车,也可以乘汽车,一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?

解:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有 3+2=5 种不同的走法。

分类计数原理又称为加法原理。

问题二:从甲地到乙地,要从甲地选乘火车到丙地,再于次日从丙地乘汽车到乙地。一天中,火车有3班,汽车有2班。那么两天中,从甲地到乙地共有多少种不同的走法? 这个问题与前一个问题有什么区别?

在前一个问题中,采用乘火车或汽车中的任何一种方式,都可以从甲地到乙地;而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到乙地.

解:因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有 3×2=6 种不同的走法。

分步计数原理又称为乘法原理。

分类计数原理(加法原理)中,“完成一件事,有n类方式”,即每种方式都可以独立地完成这件事。进行分类时,要求各类方式彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事。只有满足这个条件,才能直接用加法原理,否则不可以。

分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不足以完成这件事。如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理。

例1、某班共有男生28名、女生20名,从该班选出学生代表参加校学代会。 (1)若学校分配给该班1名代表,有多少种不同的选法?(2)若学校分配给该班2名代表,且男女生代表各1名,有多少种不同的选法?

应用这两个原理的关键是看完成这件事情是“分类”还是“分步”。

例2、在下面两个图中,使电路接通的不同方法各有多少种?

http://www.99jianzhu.com/包含内容:PDF/word/ppt 流程,表格,案例,最新作文 数学 英语 考试题库等内容免费下载。


TOP最近更新内容

    高考历史三轮复习:考前提分冲刺练2
    人教版小学语文五年级下册《草原》上课实录
  • 上一篇:第四课 诗两首
  • 下一篇:邓州市构建三个“网络”,关爱留守儿童