普通最小二乘法(OLS)
普通最小二乘法(Ordinary Least Square,简称OLS),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。
在已经获得样本观测值(i=1,2,...,n)的情况下(见图2.2.1中的散点),假如模型(2.2.1)的参数估计量已经求得到,为和,并且是最合理的参数估计量,那么直线方程(见图2.2.1中的直线)
i=1,2,...,n (2.2.2)
应该能够最好地拟合样本数据。其中为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。
(2.2.3)
为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。
由于
是、的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q对、的一阶偏导数为0时,Q达到最小。即
(2.2.4)
容易推得特征方程:
解得:
(2.2.5)
所以有:(2.2.6)
于是得到了符合最小二乘原则的参数估计量。
为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记
(2.2.6)的参数估计量可以写成
(2.2.7)
至此,完成了模型估计的第一项任务。下面进行模型估计的第二项任务,即求随机误差项方差的估计量。记为第i个样本观测点的残差,即被解释变量的估计值与观测值之差。则随机误差项方差的估计量为
(2.2.8)
在关于的无偏性的证明中,将给出(2.2.8)的推导过程,有兴趣的读者可以参考有关资料。
在结束普通最小二乘估计的时候,需要交代一个重要的概念,即"估计量"和"估计值"的区别。由(2.2.6)给出的参数估计结果是由一个具体样本资料计算出来的,它是一个"估计值",或
www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。