第二编函数
1.函数
(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.
(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.
(3)了解简单的分段函数,并能简单应用(函数分段不超过三段).
(4)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.
(5)会运用基本初等函数的图像分析函数的性质.
2.指数函数
(1)了解指数函数模型的实际背景.
(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
(3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,11,的指数函数的图像. 23
(4)体会指数函数是一类重要的函数模型.
3.对数函数
(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.
(2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数2,10,1的对数函数的图像. 2
(3)体会对数函数是一类重要的函数模型.
(4)了解指数函数y?ax(a?0且a?1)与对数函数y?logax(a?0且a?1)互为反函数.
4.幂函数
(1)了解幂函数的概念.
23(2)结合函数y?x,y?x,y?x,y?11,y?x的图像,了解它们的变化情况. x
5.函数与方程
结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.
6.函数模型及其应用
(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.
(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
(1)了解导数概念的实际背景.
(2)通过函数图像直观理解导数的几何意义.
23(3)能根据导数的定义求函数y?c(c为常数),y?x,y?x,y?x,y?
1,y?x
的导数.
(4)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如y?f?ax?b?的复合函数)的导数.
(5)了解函数的单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
(6)了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次),会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
(7)会用导数解决某些实际问题.
www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。