平面向量公式
1、向量的加法
向量的加法满足平行四边形法则和三角形法则.
AB+BC=AC.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c).
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣. 当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意.
当a=0时,对于任意实数λ,都有λa=0.
注:按定义知,如果λa=0,那么λ=0或a=0.
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.
数与向量的乘法满足下面的运算律
结合律:(λa)?b=λ(a?b)=(a?λb).
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.
3、向量的的数量积
定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a?b.若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣.
向量的数量积的坐标表示:a?b=x?x'+y?y'.
向量的数量积的运算律
a?b=b?a(交换律);
www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。