郑海明老师讲座部分例题解答
三、(二次型)函数零点问题
例3 已知函数f?x??ax2?bx?1满足对?a???1,1?,都?x0??0,2?使f?x0??0, 求b的取值范围。
解:f?x??0?a??bx?1?g?x?,x??0,2?2x
?bx2?2x??bx?1?bx?2g'?x???,x??0,2?42xx
?2b?15?1?b??,舍42
2??2???2? 当b??1时,g'????0,g?x?在?0,???,??,2??bbb??????
?2??b?????1b2b??2??g?x?max?g??????1?b??2?b?2舍?24?b??2?????b?
?b?g?
x?min?g???1,??2??
综上所诉:b??2当b??1时,g'?x??0,g?x??,g?x?max?g?2??
例4 已知f?x??x??a?2?x?alnx,其中a?0. 2
(I)若x?3是f?x?的极值点,求a的值;
(II)当a??2时,给出两组直线:6x?y?m?0、x?y?n?0,其中m、n为 常数,判断这两组直线中是否存在y?f?x?的切线,若存在,求出切线方程,若不存 在,说明理由;
(III)是否存在正实数a使方程f?x???3a?2?x?alnx有唯一实数解?若存
在,求出a的值,若不存在,说明理由。
解:(I)f'?x??2x??a?2??aa?f'?3??6?a?2??0?a??6 x3
2a??2,f?x??x2?4x?2lnx?f'?x??2x?4?,?x?0?x
(II)?k?f'?
x??4?0?6x?y?m?0不可能是切线 21当k?1时,2x?4??1?x1?,x2?2x2
当x?1时,219?1?1f????2?2ln?x?y??2ln2?0 24?2?4
当x?2时,f?2??4?8?2ln2?x?y?6?2ln2?0
(III)f?x??x2??a?2?x?alnx??3a?2?x?alnx?x2?2ax?2alnx?0 令g?x??x2?2ax?2alnx?x?0?
g'?x??2x?2a?2a22??x?ax?a?xx
g'?
x??0?x0?g?x?在?0,x0??,?x0,+???
方程在?0,???只有唯一实根?g?x?min?g?x0??0
?x02?2ax0?2alnx0?0解得x0?1?a?
四、逻辑式函数关系
例2 已知函数f?x??2alnx?x?121?a?0,x?R?,g?
x???x2?x??b?R? x
(I)若f?x?在定义域上有极值,求实数a的取值范围;
(II
)当a?
数b的取值范围;
(III)对?n?N且n?2,证明:ln?n!???n?1??n?2? 4?x1??1,e?,总?x2??1,e?,使得f?x1??g?x2?,求实
12a1?x2?2ax?1?1?2?解:(I)f?x??2alnx?x?,f'?x???x?0? xxxx2
f?x?有极值?f'?x??0在?0,???上有解(非重根)
??x2?2ax?1?0有解
???4a2?4?0???a?1?x1?x2?2a?0
(II
)依题意知:当a? f?x?max?g?x?max
1?x2??1?f?
x??x?x??f'?
x???0?x?12xx
?f?
x?在1?,
?
?1,e??
?f?
x?max?f
?1??
1??
1??1?2 ? 又?g?x?的对称轴为
x??1??1,e??g?x?max?g?
1???2? 2
?
1?2??2??b?ln1 ?
1?x2?2x?1?0?f?x?? (III)令a?1,则f?x??2lnx?x?,f'?x??xx2
?当x?1时,f?x??f?1??0?2lnx?x?
nnn1x1n?n?1?令x?1,2,3,?,n,可得:2?lnn??i????1 2i?1i?1i?1i
?4?lnn?n2?n?2?ln?n!??n2?n?2
i?1n4
322例3 设函数f?x???x?2mx?mx?1?m?m??2?的图像在x?2处的切线与
直线x?5y?12?0垂直.
(I)求函数f?x?的极值与零点;
(II)设g?x??1?x?lnx,若对?x1??0,1?,?x2??0,1?使f?x1??g?x2?成立, kx
222 求实数k的取值范围. 解:(I)?f'?x???3x?4mx?m,f'?2???12?8m?m??5
解之得m??1m??7??2舍去 ??
?f?x???x3?2x2?x?2?0???x?2??x2?1??0?x?2
?f?x?的零点为x?2.
1f'?x???3x2?4x?1?0?x1?,x2?13
1??1?? ?f?x?在???,???,1???1,????3??3??
?1?50?f?x?的极小值为f???,f?x?的极大值为f?1??2.?3?27
(II)依题意知:f?x?min?g?x?min由(I)知,当x1??0,1?时有
?1?50 f?x?min?f????3?27
又?g'?x???kx?1,x??0,1? 2kx
50,成立27
50当0?k?1时,g'?x??0,g?x??,g?x?min?g?1??0?,成立27
50?1??1?当k?1时,g?x?在?0,??,?,1??,g?x?min?g?1??0?,成立 27?k??k?当k?0时,g'?x??0,g?x??,g?x?min?g?1??0?
综上所述:k?0
实际上,g?1??0?50?f?x?min,所以k?0就行了27
1例4 已知函数f?x??lnx??1. x
(I)求函数f?x?的单调区间;
(II)设m?R,对?a???1,1?,总?x0??1,e?,使不等式ma?f?x0??0成立,求m的取值范围. 解:(I)f'?x??11x?1?2?2?f?x?在?0,1??,?1,???? xxx
(II)由题意知:?ma?max?f?x?max对?a???1,1?成立,由(I)知f?x?在?1,e??
11?f?x?max?f?e??lne??1?ee
1? m??111?e??ma?max??????m?eee??m?1
?e?
例5 已知函数f?x??ax?bx?cx?a322?a?0?的单调减区间是?1,2?,且满足f?0??1.(I)求f?x?的解析式;
(II)对?m??0,2,?关于x的不等式f?x??13m?mlnm?mt?3在x??2,???上有解,求实数 2
t的取值范围.
解:(I)f'?x??3ax?2bx?c,由题意知1,2是方程f'?x??0的两根,因此由韦达定理: 2
1?2??2bc?3,1?2??2,又?f?0??a2?1?a?1?a?0? 3a3a
99?b??,c?6?f?x??x3?x2?6x?1 22
(II)由题意知f?x?min?g?m?min对?m??0,2?都成立.
又?f?x?在?2,?????f?x?min?f?2??3
1?原不等式等价于g?m??m3?mlnm?mt?3?3对?m??0,2?恒成立 2
11即m3?mlnm?mt?0?m2?lnm?t?022
1?t?m2?lnm对?m??0,2?恒成立2
121m2?1设h?m??m?lnm,h'?m??m??2mm
11?h?m?在?0,1???1,2???h?m?min?h?1???t?22
五、函数不等式
例1 已知函数f?x??lnx,g?x??k? x?1. x?1
(I)求函数F?x??f?x??g?x?的单调区间;
(2)当x?1时,函数f?x??g?x?恒成立,求实数k的取值范围.
x2??2?2k?x?1x?112k?F'?x???? 解:(I)F?x??lnx?k??x?0? 22x?1x?x?1?x?x?1?
当k?0时,F'?x??0,F?x?在?0,????
当0?k?2时,F'?x??0,F?x?在?0,????
当k?2时,F'?
x??0?x1?k?1x2?k?1??F?
x?在
0,k?1?,k?1????
??
?k?1k?1? (II)原题意等价于当x?1时,F?x??0恒成立.由(I)知:
当k?2时,F?x?在?1,+????F?x??F?1??0成立.
当k?
2时,k?11?k?1?F?
x?在1,k?1?此时F?x??F?1??0不合题意,
综上所述,k?2. ?
ex
例2 已知函数f?x??x. xe?1
(I)证明:0?f?x??1;
(II)当x?0时,f?x??1
ax2?1
x,求a的取值范围. (I)证明:先证f?x??0,由于e?0,故只需证分母大于0
设g?x??xex?1,g'?x??ex?1?x??g?x?在???,?1????1,????
1?g?x?min?g??1????1?0?g?x??0?f?x??0 e
ex
?1?ex?xex?1?ex?x?1??1?0 下证f?x??1?f?x??1?xxe?1
设h?x??ex?x?1??1,h'?x??xex?h?x?在???,0???0,????
?h?x?min?h?0??0?h?x??0恒成立,即f?x??1
综上所述:0?f?x??1.
(II)当x?0时,若a?
0,则?x?11?0,??2?1?f?x? 21?a?12?1?f?x?,舍去,?a?0 不满足题意,舍,若a?0,则1
ax2?1
ex1xex?1?x?2??ax2?1 此时f?x??2xax?1xe?1ax?1e1
?x?e?x?ax2?1?e?x?ax2?x?1?0
设:g?x??e?x ?ax2?x?1,注意到g?0??0
g'?x???e?x?2ax?1,g'?0??0
g"?x??e?2a,g"?0??1?2a?x
当a?1时,g"?0??0,而g"?x?在?0,?????g"?x??g"?0??0 2
?g'?x?在?0,?????g'?x??g'?0??0
?g?x?在?0,?????g?x??g?0??0恒成立
符合题意.
当0?a?1时,g"?0??1?2a?0,又?g"??ln2a??eln2a?2a?0 2
而g"?x?在?0,?????当x??0,?ln2a?时,有g"?x??0, 从而g'?x?在?0,?ln2a???g'?x??g'?0??0
?g?x?在?0,?ln2a???g?x??g?0??0不合题意,舍去
综上所述:a?1. 2
例3 已知函数f?x??lnx?a?x?1?,g?x??ex.
(I)求函数f?x?的单调区间;
(II)当a?0时,过原点分别做曲线y?f?x?与y?g?x?的切线l1、l2,已知两切线的斜率
e?1e2?1?a? 互为倒数,证明:. ee
(III)设h?x??f?x?1??g?x?,当x?0时,h?x??1,求实数a的取值范围. 解:(I)?f'?x??1?a?x?0? x
?当a?0时,f?x?在?0,????
?1??1? 当a?0时,f?x?在?0,???,?????a??a?
(II)设l1:y?k1x与y?f?x?的切点为?x1,y1?
f'?x??11?a,k1?f'?x1???a xx1
?1??l1:y???a?x?x1?
??1??y1???a?x1?1?ax11?aa?1x???x?e?k?e?a?1?11?y?lnx?ax?1?1?1?1
设l2:y?k2x与y?g?x?的切点为?x2,y2?同理易求得:k2?e 由题意知:k1?k2?1?e?ae?1?0
设h?a??e?ae?1,h'?a??e?e?0?a?1 aaa
?h?a?在???,1???1,????当a?0时,h?0??0,但a?0?a?1,h?1??e?e?1??1?0,h?2??e2?2e?1?0ea?1?e?1e2?1??1?a?2?a???,?eee??
(III)?h?x??f?x?1??g?x??ln?x?1??ax+ex,?x?0?
?H?x??h?x??1?ln?x?1??ax?ex?1,H?0??0
h?x??1?H?x??0
11?a?ex??a?x?1?2?ax?1x?1
?当a?2时,H'?x??0,H?x?在?0,????,H?x??H?0??0H'?x??
符合题意.
当a?2时,H'?0??1?a?1?2?a?0,
而H'?lna??11?a?elna??0, lna?1lna?1
??1x+????H"?x??e??0,?x?0?? 又H'?x?在?0,2???x?1???
??x0??0,lna?使得H'?x0??0,则H?x?在?0,x0??,H?x??H?0??0
不合题意,舍去.
综上所述:a?2
例4 已知函数f?x???x?x,g?x??alnx?a?0,a?R?. 32
(I)求f?x?的极值;
(II)若对?x??1,???,使得f?x??g?x???x??a?2?x恒成立,求实数a的取值范围; 3
(III)证明:对?n?N,不等式
成立. ?1112016????? lnn?1lnn?2lnn?2016nn?2016解:(I)?f'?x???3x?2x?0?x1?0,x2?22 3
?2??2??2?4 ?f?x?在???,0???0,???,?????f极小=f?0??0,f极大?f????3??3??3?27
(II)f?x??g?x???x3??a?2?x??x3?x2?alnx??x3??a?2?x
?h?x??x2??a?2?x?alnx?0对?x??1,???恒成立.
考虑到h?1??1??a?2???a?1?0?a??1
2a2x??a?2?x?aa又?h'?x??2x??a?2????0?x1?,x2?1 xx2
当a??1时,x1?a1???h?x?在?1,?????h?x??h?1???1?a?0 22
?a??1.
(III)由(II)知,当a??1时,h?x??0对?x??1,???恒成立.
即:x?x?lnx?0?lnx?x?x当且仅当x?1时等号成立.
当x?1时,lnx?x?x?222111 ?2?lnxx?xxx?11111, ???lnn?1nn?1nn?1 对?n?1,2,3,?,n,令x?n?1,
?
?111????lnn?1lnn?2lnn?2016111111???????nn?1n?1n?2n?2015n?2016
11?? nn?2016
2016?nn?20161?lnx. x例5 已知函数f?x??
(I)若f?x?在区间?a,a???a?0?上存在极值点,求实数a的取值范围;
(II)当x?1时,不等式f?x??
2??1?3?k恒成立,求实数k的取值范围; x?1n?2?2
n?1 (III)求证:???n?1?!????n?1?e
解:(I)?f'?x???n?N?. *?lnx1?0?x?1?x?1a?1?a?是的极值点,由题意知: fx??2x3
2??a?1 3
k?1?x?1?k1?lnxk???g?x??lnx??0 (II)当x?1时,f?x??x?1xx?1x?1
2k?21kx?k?kxx??2?k?x?1?g?1????0?k?2又?h'?x???? 222xx?x?1??x?1?
?当k?2时,h'?x??0,h?x?在?1,?????h?x??h?1??0
?k?2满足题意.
(III)???n?1?!????n?1?e2n?2?2
n?1??n?1??n!??e
?2n?2?2n?1 2222 两边取对数得:ln?n?1???lnn?ln?n?1????ln2??n?2??
2
n?1 2xx?12?1??1? 由(II)知,当k?2时,lnx? x?1x?1x?1?ln??n?n?1????ln???n?1?n?????ln?2?3??ln?1?2??n?2?n?1
2222?1??1??x2?x?1x2?xxx?1
令x?n,?n?1?,?,2,1得:lnx?x?1??1?
ln??n?n?1????ln???n?1?n?????ln?2?3??ln?1?2?
22222222?1???1?????1???1??nn?1n?1n2312
2?n?2?.?原不等式成立.n?1
例6 设函数f?x??lnx?px?1.
(I)求函数f?x?的极值点;
(II)若对?x?0,恒有f?x??0,求p的取值范围;
ln22ln32lnn22n2?n?1 (III)证明:2?2???2??n?N,n?2?. 23n2n?1 解:(I)?f'?x??1?p?x?0? x
?当p?0时,f?x?无极值点
当p?0时,f?x?在?0,?
??11??1,故为f?x?的极大值点. ?,??????pp??p?
(II)当p?0时,f'?x??0,f?x??,而当x?1时,f?x??f?1???p?1?0舍去. 当p?0时,由(I)知f?x?max?f??1?11?ln?p??1??lnp,由f?x??0 ?ppp??
恒成立得f?x?max??lnp?0?p?1.
(III)由(II)知:当p?1时,f?x??lnx?x?1?0恒成立,当且仅当x?1时取等号.
lnxx?1lnx2x2?11111. ?lnx?x?1???2?2?1?2?1??1??xxxxxxx?1xx?1
令x?2,3,?,n可得:
ln22ln32lnn2111111?????1??+1?????1??2232n22334nn?1 112n2?n?1?n?1????n?N,n?2?.命题得证.2n?12n?1例7 已知函数f?x??x?ln?x?a?的最小值为0,其中a?0.
(I)求a的值;
(II)若对?x?0,恒有f?x??kx成立,求实数k的取值范围; 2
(III)证明:2?ln?2n?1??2?n?N*?. ?i?12i?1
1x?a?1??x??a?,f'?x??0?x?1?a x?ax?a
n 解:(I)f'?x??1??f?x?在??a,1?a???1?a,????
2?f?x?min?f?1?a??0?1?a?ln?1?a?a??1?a?0?a?1(II)由(I)知:f?x??x?ln?x?1?,f?x??kx在?0,???恒成立,可知:
x?ln?x?1??kx2?g?x??kx2?x?ln?x?1??0在?0,???恒成立,
g?0??0,g'?x??2kx?1?
且g"?x?在?0,????11,g'?0??0,g"?x??2k?,g"?0??2k?12x?1?x?1?
当k?1时,g"?x??g"?0??0?g'?x???g'?x??g'?0??0 2
?g?x???g?x??g?0??0.符合题意.
当0?k?
1时,取x0?1,g"?x0??0, 2g"?0??2k?1?0,g"?x?在?0,????,?g'?x?在?0,x0???g'?x??g'?0??0
从而g?x?在?0,x0???g?x??g?0??0.不合题意,舍去.
当k?0时,g"?x??0恒成立,从而g'?x???g'?x??g'?0??0 ?g?x???g?x??g?0??0?x??0,????.不合题意,舍去.
综上所述:k的最小值为
(III)由(II)知,当k?1. 2112时,g?x??k?x?ln?x?1??0对?x?0恒成立,当且仅当 22
12x?0时等号成立,故当x?0时,x?ln?x?1??x2,令x??0?i?1,2,?,n? 22i?1
2222i?12?2?1?2??ln??1?????ln? 得: ?22i?12i?12i?1?2i?1??2i?1?2?2i?1?
当n?1时,原不等式可化为2?ln3?2,显然成立.
当n?2时,22i?12211 ?ln????2i?12i?1?2i?1?22i?32i?12i?32i?1
nn22i?11??1????ln?2?ln3?????2i?12i?1?i?12i?1i?1i?2?2i?3n
??i?1n21?ln?2n?1??2?ln3?1??22i?12n?1
?对?n?N?,原不等式都成立.
例8 已知函数f?x??ax?b?c?a?0?的图象在点?1,f?1??处的切线方程为y?x?1. x
(I)用a表示出b、c;
(II)若f?x??lnx在?1,???上恒成立,求a的取值范围;
(III)证明:1?111n?????ln?n?1???n?1?. 23n2n?1
解:(I)由题意知:f?1??1?1?0又?y?x?1为切线,?f'?1??k?1 又?f'?x??a??b?f?1??a?b?c?0?b?a?1,??? ?2f'1?a?b?1c?1?2ax?????
a?1?1?2a?lnx?x?1?恒成立 x (II)由(I)知:f?x??ax?
?g?x??ax?a?1?1?2a?lnx?0?x?1?恒成立. x
2a?11ax?x??a?1??ax?a?1??x?1?g?1??0,g'?x??a?2????0 xxx2x2
?x1?1,x2?1?a a
1?a1?1,即a?时,g'?x??0在?1,???恒成立,?g?x?? a2当
?g?x??g?1??0满足题意.
当1?a1?1?a??1?a??1,即0?a?时,g?x?在?1,?,?????? a2aa????此时g?x?在?1,
综上所述:a?
(III)当a??1?a??上满足g?x??g?1??0不合题意,舍去. ?a?1 2111?lnx?0对?x??1,???恒成立. 时,由(II)知g?x??x?222x
11?lnx对?x??1,???恒成立. 即x?22x
令x?1?11?1n?n?11?11?n?1?1,则?1?? ?ln???ln???n2?nn?1?n2?nn?1?n?11n?1111n?11?11?即?ln??ln?????? n2?nn?1?2n2nn2n2n?1n
取n?1,2,?,n得:
1111?????23n 23n?11?1?1?11?1?11??ln?ln???ln??1????????????12n2?2?2?23?2?nn?1?
n?1?1?11111??23?ln??????1??????????n?2?223nn?1??12 n?ln?n?1??2n?1例9 已知函数f?x??ln?x?1?,g?x??xf?x?.
(I)求g?x?的极值;
(II)若ax?f?x?对x?0恒成立,求a的取值范围;
(III)若数列?an?满足an?111??S?.其前项和为,求证:?ln1?,Snnn?n?62n2?? 解:(I)g?x??xf?x??xln?x?1??g'?x??ln?x?1??x1?ln?x?1??1? x?1x?1
?g'?x?在??1,????又?g'?0??0?当x???1,0?时,g'?x??0,g?x??
当x??0,???时,g'?x??0,g?x???g?x?的极小值为g?0??0.
(II)由ax?f?x??ln?x?1??h?x??ax?ln?x?1??0在?0,???上恒成立. 注意到h?0??0,h'?x??a?1ax?a?1??x?0? x?1x?1
当a?0时,h'?x??0恒成立,?h?x???h?x??h?0??0不合题意,舍.
当a?1时,h'?x??0在?0,???恒成立,?h?x???h?x??h?0??0符合题意. 当0?a?1时,h'?x??0?x?1?a?1?a??1?a??0,此时h?x?在?0???,???? aa??a?? 从而当x??0,?1?a??时,h?x??h?0??0不合题意,舍. a??
综上所述:a?1.
(III)由例7(II)知可以证明:x?ln?x?1??
令x?12x对?x??0,???恒成立. 2111?得:a??ln1?n?n2n2n?2?11???n ?24
www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。