导数部分习题解析

 

郑海明老师讲座部分例题解答

三、(二次型)函数零点问题

例3 已知函数f?x??ax2?bx?1满足对?a???1,1?,都?x0??0,2?使f?x0??0, 求b的取值范围。

解:f?x??0?a??bx?1?g?x?,x??0,2?2x

?bx2?2x??bx?1?bx?2g'?x???,x??0,2?42xx

?2b?15?1?b??,舍42

2??2???2? 当b??1时,g'????0,g?x?在?0,???,??,2??bbb??????

?2??b?????1b2b??2??g?x?max?g??????1?b??2?b?2舍?24?b??2?????b?

?b?g?

x?min?g???1,??2??

综上所诉:b??2当b??1时,g'?x??0,g?x??,g?x?max?g?2??

例4 已知f?x??x??a?2?x?alnx,其中a?0. 2

(I)若x?3是f?x?的极值点,求a的值;

(II)当a??2时,给出两组直线:6x?y?m?0、x?y?n?0,其中m、n为 常数,判断这两组直线中是否存在y?f?x?的切线,若存在,求出切线方程,若不存 在,说明理由;

(III)是否存在正实数a使方程f?x???3a?2?x?alnx有唯一实数解?若存

在,求出a的值,若不存在,说明理由。

解:(I)f'?x??2x??a?2??aa?f'?3??6?a?2??0?a??6 x3

2a??2,f?x??x2?4x?2lnx?f'?x??2x?4?,?x?0?x

(II)?k?f'?

x??4?0?6x?y?m?0不可能是切线 21当k?1时,2x?4??1?x1?,x2?2x2

当x?1时,219?1?1f????2?2ln?x?y??2ln2?0 24?2?4

当x?2时,f?2??4?8?2ln2?x?y?6?2ln2?0

(III)f?x??x2??a?2?x?alnx??3a?2?x?alnx?x2?2ax?2alnx?0 令g?x??x2?2ax?2alnx?x?0?

g'?x??2x?2a?2a22??x?ax?a?xx

g'?

x??0?x0?g?x?在?0,x0??,?x0,+???

方程在?0,???只有唯一实根?g?x?min?g?x0??0

?x02?2ax0?2alnx0?0解得x0?1?a?

四、逻辑式函数关系

例2 已知函数f?x??2alnx?x?121?a?0,x?R?,g?

x???x2?x??b?R? x

(I)若f?x?在定义域上有极值,求实数a的取值范围;

(II

)当a?

数b的取值范围;

(III)对?n?N且n?2,证明:ln?n!???n?1??n?2? 4?x1??1,e?,总?x2??1,e?,使得f?x1??g?x2?,求实

12a1?x2?2ax?1?1?2?解:(I)f?x??2alnx?x?,f'?x???x?0? xxxx2

f?x?有极值?f'?x??0在?0,???上有解(非重根)

??x2?2ax?1?0有解

???4a2?4?0???a?1?x1?x2?2a?0

(II

)依题意知:当a? f?x?max?g?x?max

1?x2??1?f?

x??x?x??f'?

x???0?x?12xx

?f?

x?在1?,

?

?1,e??

?f?

x?max?f

?1??

1??

1??1?2 ? 又?g?x?的对称轴为

x??1??1,e??g?x?max?g?

1???2? 2

?

1?2??2??b?ln1 ?

1?x2?2x?1?0?f?x?? (III)令a?1,则f?x??2lnx?x?,f'?x??xx2

?当x?1时,f?x??f?1??0?2lnx?x?

nnn1x1n?n?1?令x?1,2,3,?,n,可得:2?lnn??i????1 2i?1i?1i?1i

?4?lnn?n2?n?2?ln?n!??n2?n?2

i?1n4

322例3 设函数f?x???x?2mx?mx?1?m?m??2?的图像在x?2处的切线与

直线x?5y?12?0垂直.

(I)求函数f?x?的极值与零点;

(II)设g?x??1?x?lnx,若对?x1??0,1?,?x2??0,1?使f?x1??g?x2?成立, kx

222 求实数k的取值范围. 解:(I)?f'?x???3x?4mx?m,f'?2???12?8m?m??5

解之得m??1m??7??2舍去 ??

?f?x???x3?2x2?x?2?0???x?2??x2?1??0?x?2

?f?x?的零点为x?2.

1f'?x???3x2?4x?1?0?x1?,x2?13

1??1?? ?f?x?在???,???,1???1,????3??3??

?1?50?f?x?的极小值为f???,f?x?的极大值为f?1??2.?3?27

(II)依题意知:f?x?min?g?x?min由(I)知,当x1??0,1?时有

?1?50 f?x?min?f????3?27

又?g'?x???kx?1,x??0,1? 2kx

50,成立27

50当0?k?1时,g'?x??0,g?x??,g?x?min?g?1??0?,成立27

50?1??1?当k?1时,g?x?在?0,??,?,1??,g?x?min?g?1??0?,成立 27?k??k?当k?0时,g'?x??0,g?x??,g?x?min?g?1??0?

综上所述:k?0

实际上,g?1??0?50?f?x?min,所以k?0就行了27

1例4 已知函数f?x??lnx??1. x

(I)求函数f?x?的单调区间;

(II)设m?R,对?a???1,1?,总?x0??1,e?,使不等式ma?f?x0??0成立,求m的取值范围. 解:(I)f'?x??11x?1?2?2?f?x?在?0,1??,?1,???? xxx

(II)由题意知:?ma?max?f?x?max对?a???1,1?成立,由(I)知f?x?在?1,e??

11?f?x?max?f?e??lne??1?ee

1? m??111?e??ma?max??????m?eee??m?1

?e?

例5 已知函数f?x??ax?bx?cx?a322?a?0?的单调减区间是?1,2?,且满足f?0??1.(I)求f?x?的解析式;

(II)对?m??0,2,?关于x的不等式f?x??13m?mlnm?mt?3在x??2,???上有解,求实数 2

t的取值范围.

解:(I)f'?x??3ax?2bx?c,由题意知1,2是方程f'?x??0的两根,因此由韦达定理: 2

1?2??2bc?3,1?2??2,又?f?0??a2?1?a?1?a?0? 3a3a

99?b??,c?6?f?x??x3?x2?6x?1 22

(II)由题意知f?x?min?g?m?min对?m??0,2?都成立.

又?f?x?在?2,?????f?x?min?f?2??3

1?原不等式等价于g?m??m3?mlnm?mt?3?3对?m??0,2?恒成立 2

11即m3?mlnm?mt?0?m2?lnm?t?022

1?t?m2?lnm对?m??0,2?恒成立2

121m2?1设h?m??m?lnm,h'?m??m??2mm

11?h?m?在?0,1???1,2???h?m?min?h?1???t?22

五、函数不等式

例1 已知函数f?x??lnx,g?x??k? x?1. x?1

(I)求函数F?x??f?x??g?x?的单调区间;

(2)当x?1时,函数f?x??g?x?恒成立,求实数k的取值范围.

x2??2?2k?x?1x?112k?F'?x???? 解:(I)F?x??lnx?k??x?0? 22x?1x?x?1?x?x?1?

当k?0时,F'?x??0,F?x?在?0,????

当0?k?2时,F'?x??0,F?x?在?0,????

当k?2时,F'?

x??0?x1?k?1x2?k?1??F?

x?在

0,k?1?,k?1????

??

?k?1k?1? (II)原题意等价于当x?1时,F?x??0恒成立.由(I)知:

当k?2时,F?x?在?1,+????F?x??F?1??0成立.

当k?

2时,k?11?k?1?F?

x?在1,k?1?此时F?x??F?1??0不合题意,

综上所述,k?2. ?

ex

例2 已知函数f?x??x. xe?1

(I)证明:0?f?x??1;

(II)当x?0时,f?x??1

ax2?1

x,求a的取值范围. (I)证明:先证f?x??0,由于e?0,故只需证分母大于0

设g?x??xex?1,g'?x??ex?1?x??g?x?在???,?1????1,????

1?g?x?min?g??1????1?0?g?x??0?f?x??0 e

ex

?1?ex?xex?1?ex?x?1??1?0 下证f?x??1?f?x??1?xxe?1

设h?x??ex?x?1??1,h'?x??xex?h?x?在???,0???0,????

?h?x?min?h?0??0?h?x??0恒成立,即f?x??1

综上所述:0?f?x??1.

(II)当x?0时,若a?

0,则?x?11?0,??2?1?f?x? 21?a?12?1?f?x?,舍去,?a?0 不满足题意,舍,若a?0,则1

ax2?1

ex1xex?1?x?2??ax2?1 此时f?x??2xax?1xe?1ax?1e1

?x?e?x?ax2?1?e?x?ax2?x?1?0

设:g?x??e?x ?ax2?x?1,注意到g?0??0

g'?x???e?x?2ax?1,g'?0??0

g"?x??e?2a,g"?0??1?2a?x

当a?1时,g"?0??0,而g"?x?在?0,?????g"?x??g"?0??0 2

?g'?x?在?0,?????g'?x??g'?0??0

?g?x?在?0,?????g?x??g?0??0恒成立

符合题意.

当0?a?1时,g"?0??1?2a?0,又?g"??ln2a??eln2a?2a?0 2

而g"?x?在?0,?????当x??0,?ln2a?时,有g"?x??0, 从而g'?x?在?0,?ln2a???g'?x??g'?0??0

?g?x?在?0,?ln2a???g?x??g?0??0不合题意,舍去

综上所述:a?1. 2

例3 已知函数f?x??lnx?a?x?1?,g?x??ex.

(I)求函数f?x?的单调区间;

(II)当a?0时,过原点分别做曲线y?f?x?与y?g?x?的切线l1、l2,已知两切线的斜率

e?1e2?1?a? 互为倒数,证明:. ee

(III)设h?x??f?x?1??g?x?,当x?0时,h?x??1,求实数a的取值范围. 解:(I)?f'?x??1?a?x?0? x

?当a?0时,f?x?在?0,????

?1??1? 当a?0时,f?x?在?0,???,?????a??a?

(II)设l1:y?k1x与y?f?x?的切点为?x1,y1?

f'?x??11?a,k1?f'?x1???a xx1

?1??l1:y???a?x?x1?

??1??y1???a?x1?1?ax11?aa?1x???x?e?k?e?a?1?11?y?lnx?ax?1?1?1?1

设l2:y?k2x与y?g?x?的切点为?x2,y2?同理易求得:k2?e 由题意知:k1?k2?1?e?ae?1?0

设h?a??e?ae?1,h'?a??e?e?0?a?1 aaa

?h?a?在???,1???1,????当a?0时,h?0??0,但a?0?a?1,h?1??e?e?1??1?0,h?2??e2?2e?1?0ea?1?e?1e2?1??1?a?2?a???,?eee??

(III)?h?x??f?x?1??g?x??ln?x?1??ax+ex,?x?0?

?H?x??h?x??1?ln?x?1??ax?ex?1,H?0??0

h?x??1?H?x??0

11?a?ex??a?x?1?2?ax?1x?1

?当a?2时,H'?x??0,H?x?在?0,????,H?x??H?0??0H'?x??

符合题意.

当a?2时,H'?0??1?a?1?2?a?0,

而H'?lna??11?a?elna??0, lna?1lna?1

??1x+????H"?x??e??0,?x?0?? 又H'?x?在?0,2???x?1???

??x0??0,lna?使得H'?x0??0,则H?x?在?0,x0??,H?x??H?0??0

不合题意,舍去.

综上所述:a?2

例4 已知函数f?x???x?x,g?x??alnx?a?0,a?R?. 32

(I)求f?x?的极值;

(II)若对?x??1,???,使得f?x??g?x???x??a?2?x恒成立,求实数a的取值范围; 3

(III)证明:对?n?N,不等式

成立. ?1112016????? lnn?1lnn?2lnn?2016nn?2016解:(I)?f'?x???3x?2x?0?x1?0,x2?22 3

?2??2??2?4 ?f?x?在???,0???0,???,?????f极小=f?0??0,f极大?f????3??3??3?27

(II)f?x??g?x???x3??a?2?x??x3?x2?alnx??x3??a?2?x

?h?x??x2??a?2?x?alnx?0对?x??1,???恒成立.

考虑到h?1??1??a?2???a?1?0?a??1

2a2x??a?2?x?aa又?h'?x??2x??a?2????0?x1?,x2?1 xx2

当a??1时,x1?a1???h?x?在?1,?????h?x??h?1???1?a?0 22

?a??1.

(III)由(II)知,当a??1时,h?x??0对?x??1,???恒成立.

即:x?x?lnx?0?lnx?x?x当且仅当x?1时等号成立.

当x?1时,lnx?x?x?222111 ?2?lnxx?xxx?11111, ???lnn?1nn?1nn?1 对?n?1,2,3,?,n,令x?n?1,

?

?111????lnn?1lnn?2lnn?2016111111???????nn?1n?1n?2n?2015n?2016

11?? nn?2016

2016?nn?20161?lnx. x例5 已知函数f?x??

(I)若f?x?在区间?a,a???a?0?上存在极值点,求实数a的取值范围;

(II)当x?1时,不等式f?x??

2??1?3?k恒成立,求实数k的取值范围; x?1n?2?2

n?1 (III)求证:???n?1?!????n?1?e

解:(I)?f'?x???n?N?. *?lnx1?0?x?1?x?1a?1?a?是的极值点,由题意知: fx??2x3

2??a?1 3

k?1?x?1?k1?lnxk???g?x??lnx??0 (II)当x?1时,f?x??x?1xx?1x?1

2k?21kx?k?kxx??2?k?x?1?g?1????0?k?2又?h'?x???? 222xx?x?1??x?1?

?当k?2时,h'?x??0,h?x?在?1,?????h?x??h?1??0

?k?2满足题意.

(III)???n?1?!????n?1?e2n?2?2

n?1??n?1??n!??e

?2n?2?2n?1 2222 两边取对数得:ln?n?1???lnn?ln?n?1????ln2??n?2??

2

n?1 2xx?12?1??1? 由(II)知,当k?2时,lnx? x?1x?1x?1?ln??n?n?1????ln???n?1?n?????ln?2?3??ln?1?2??n?2?n?1

2222?1??1??x2?x?1x2?xxx?1

令x?n,?n?1?,?,2,1得:lnx?x?1??1?

ln??n?n?1????ln???n?1?n?????ln?2?3??ln?1?2?

22222222?1???1?????1???1??nn?1n?1n2312

2?n?2?.?原不等式成立.n?1

例6 设函数f?x??lnx?px?1.

(I)求函数f?x?的极值点;

(II)若对?x?0,恒有f?x??0,求p的取值范围;

ln22ln32lnn22n2?n?1 (III)证明:2?2???2??n?N,n?2?. 23n2n?1 解:(I)?f'?x??1?p?x?0? x

?当p?0时,f?x?无极值点

当p?0时,f?x?在?0,?

??11??1,故为f?x?的极大值点. ?,??????pp??p?

(II)当p?0时,f'?x??0,f?x??,而当x?1时,f?x??f?1???p?1?0舍去. 当p?0时,由(I)知f?x?max?f??1?11?ln?p??1??lnp,由f?x??0 ?ppp??

恒成立得f?x?max??lnp?0?p?1.

(III)由(II)知:当p?1时,f?x??lnx?x?1?0恒成立,当且仅当x?1时取等号.

lnxx?1lnx2x2?11111. ?lnx?x?1???2?2?1?2?1??1??xxxxxxx?1xx?1

令x?2,3,?,n可得:

ln22ln32lnn2111111?????1??+1?????1??2232n22334nn?1 112n2?n?1?n?1????n?N,n?2?.命题得证.2n?12n?1例7 已知函数f?x??x?ln?x?a?的最小值为0,其中a?0.

(I)求a的值;

(II)若对?x?0,恒有f?x??kx成立,求实数k的取值范围; 2

(III)证明:2?ln?2n?1??2?n?N*?. ?i?12i?1

1x?a?1??x??a?,f'?x??0?x?1?a x?ax?a

n 解:(I)f'?x??1??f?x?在??a,1?a???1?a,????

2?f?x?min?f?1?a??0?1?a?ln?1?a?a??1?a?0?a?1(II)由(I)知:f?x??x?ln?x?1?,f?x??kx在?0,???恒成立,可知:

x?ln?x?1??kx2?g?x??kx2?x?ln?x?1??0在?0,???恒成立,

g?0??0,g'?x??2kx?1?

且g"?x?在?0,????11,g'?0??0,g"?x??2k?,g"?0??2k?12x?1?x?1?

当k?1时,g"?x??g"?0??0?g'?x???g'?x??g'?0??0 2

?g?x???g?x??g?0??0.符合题意.

当0?k?

1时,取x0?1,g"?x0??0, 2g"?0??2k?1?0,g"?x?在?0,????,?g'?x?在?0,x0???g'?x??g'?0??0

从而g?x?在?0,x0???g?x??g?0??0.不合题意,舍去.

当k?0时,g"?x??0恒成立,从而g'?x???g'?x??g'?0??0 ?g?x???g?x??g?0??0?x??0,????.不合题意,舍去.

综上所述:k的最小值为

(III)由(II)知,当k?1. 2112时,g?x??k?x?ln?x?1??0对?x?0恒成立,当且仅当 22

12x?0时等号成立,故当x?0时,x?ln?x?1??x2,令x??0?i?1,2,?,n? 22i?1

2222i?12?2?1?2??ln??1?????ln? 得: ?22i?12i?12i?1?2i?1??2i?1?2?2i?1?

当n?1时,原不等式可化为2?ln3?2,显然成立.

当n?2时,22i?12211 ?ln????2i?12i?1?2i?1?22i?32i?12i?32i?1

nn22i?11??1????ln?2?ln3?????2i?12i?1?i?12i?1i?1i?2?2i?3n

??i?1n21?ln?2n?1??2?ln3?1??22i?12n?1

?对?n?N?,原不等式都成立.

例8 已知函数f?x??ax?b?c?a?0?的图象在点?1,f?1??处的切线方程为y?x?1. x

(I)用a表示出b、c;

(II)若f?x??lnx在?1,???上恒成立,求a的取值范围;

(III)证明:1?111n?????ln?n?1???n?1?. 23n2n?1

解:(I)由题意知:f?1??1?1?0又?y?x?1为切线,?f'?1??k?1 又?f'?x??a??b?f?1??a?b?c?0?b?a?1,??? ?2f'1?a?b?1c?1?2ax?????

a?1?1?2a?lnx?x?1?恒成立 x (II)由(I)知:f?x??ax?

?g?x??ax?a?1?1?2a?lnx?0?x?1?恒成立. x

2a?11ax?x??a?1??ax?a?1??x?1?g?1??0,g'?x??a?2????0 xxx2x2

?x1?1,x2?1?a a

1?a1?1,即a?时,g'?x??0在?1,???恒成立,?g?x?? a2当

?g?x??g?1??0满足题意.

当1?a1?1?a??1?a??1,即0?a?时,g?x?在?1,?,?????? a2aa????此时g?x?在?1,

综上所述:a?

(III)当a??1?a??上满足g?x??g?1??0不合题意,舍去. ?a?1 2111?lnx?0对?x??1,???恒成立. 时,由(II)知g?x??x?222x

11?lnx对?x??1,???恒成立. 即x?22x

令x?1?11?1n?n?11?11?n?1?1,则?1?? ?ln???ln???n2?nn?1?n2?nn?1?n?11n?1111n?11?11?即?ln??ln?????? n2?nn?1?2n2nn2n2n?1n

取n?1,2,?,n得:

1111?????23n 23n?11?1?1?11?1?11??ln?ln???ln??1????????????12n2?2?2?23?2?nn?1?

n?1?1?11111??23?ln??????1??????????n?2?223nn?1??12 n?ln?n?1??2n?1例9 已知函数f?x??ln?x?1?,g?x??xf?x?.

(I)求g?x?的极值;

(II)若ax?f?x?对x?0恒成立,求a的取值范围;

(III)若数列?an?满足an?111??S?.其前项和为,求证:?ln1?,Snnn?n?62n2?? 解:(I)g?x??xf?x??xln?x?1??g'?x??ln?x?1??x1?ln?x?1??1? x?1x?1

?g'?x?在??1,????又?g'?0??0?当x???1,0?时,g'?x??0,g?x??

当x??0,???时,g'?x??0,g?x???g?x?的极小值为g?0??0.

(II)由ax?f?x??ln?x?1??h?x??ax?ln?x?1??0在?0,???上恒成立. 注意到h?0??0,h'?x??a?1ax?a?1??x?0? x?1x?1

当a?0时,h'?x??0恒成立,?h?x???h?x??h?0??0不合题意,舍.

当a?1时,h'?x??0在?0,???恒成立,?h?x???h?x??h?0??0符合题意. 当0?a?1时,h'?x??0?x?1?a?1?a??1?a??0,此时h?x?在?0???,???? aa??a?? 从而当x??0,?1?a??时,h?x??h?0??0不合题意,舍. a??

综上所述:a?1.

(III)由例7(II)知可以证明:x?ln?x?1??

令x?12x对?x??0,???恒成立. 2111?得:a??ln1?n?n2n2n?2?11???n ?24

www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。


TOP最近更新内容

    长城小学关爱留守儿童工作制度
    园林史名词解释
  • 上一篇:一次函数好题
  • 下一篇:2014年高二数学会考模拟试卷2