奥林匹克数学集训队高中数学联赛专题
不等式证明
专题一 不等式及其基本证明方法
概述
不等式在数学中占有重要地位,数学奥林匹克中不等式的题目甚多,几乎每届IMO与CMO都有一道不等式的题目,在全国高中数学联赛中,不等式也是屡见不鲜.不等式的题目有各种难度,能够很好地区分出学生的水平与创造力,在现在的竞赛中,不等式几乎已经可以和平面几何分庭抗礼了. 不等式的一些基本的性质:
(1)设a,b?R,那么a?b?a?b?0;a?b?a?b?0;a?b?a?b?0.
a?1. b
(3)传递性:a?b,b?c?a?c.
(4)a?b?a?c?b?c.
(5)a?c,b?d?a?b?c?d;a?c,b?d?a?b?c?d.
(6)a?b,c?0?ac?bc;a?b,c?0?ac?bc.
(7)a?b?0,c?d?0?ac?bd. (2)设a,b?0,那么a?b?
(8)a?b?an?bn(n?N?).
(9)a?b,ab?0?11?. ab
(10
)a?b?0n?N?,n?1).
由性质(1)(2),可以得到证明不等式的基本方法,即比较法,分为差值比较与商值比较,一般而言,对于和式的比较,通常采用差值比较,主要涉及到代数式的恒等变形,如配方、因式分解、拆项与合并等,这就要求我们对代数式的变形的技巧熟练掌握,而对于含有指数的连乘积形式的代数式,通常采用商值比较.
1?3?1?3?【例1】已知a?0,b??a??,c??b??,试比较a,b,c的大小.
2?a?2?b?
当a a?b?c
当0?a a?c?b
当a c?b?a
【例2】设a,b,c?R,证明:a2?b2?c2≥ab?bc?ca.
111a2?b2?c2?(ab?bc?ac)?(a?b)2?(b?c)2?(c?a)2≥0 222
【例3】设x,y,z?R,A,B,C为△ABC的三个内角,请明三角形嵌入不等式:
x2?y2?z2≥2xycosC?2yzcosA?2zxcosB,并求出取等条件.
x2?y2?z2?(2xycosC?2yzcosA?2zxcosB)
?(x?ycosC?zcosB)2?(ysinC)2?(zsinB)2?2yzcosBcosC?2yzcosA
?(x?ycosC?zcosB)2?(ysinC)2?(zsinB)2?2yzsinBsinC
?(x?ycosC?zcosB)2?(ysinC?zsinB)2≥0
等事情成立?x?ycosC?zcosB
ysinC?zsinB
?xyz ??sinAsinBsinC
【例4】设实数x,y,z满足xy?yz?zx?1?0,求证:x2?5y2?8z2≥4. x2?5y2?8z2?4
?x2?5y2?8z2?4(xy?yz?zx)
?(x?2y?2z)2?(y?2z)2≥0
【例5】设a,b,c为正实数,证明:a2ab2bc2c≥ab?cba?cca?b. 不妨设a≥b≥c?0
a2ab2bc2c?a????b?ca?ca?babc?b?a?b?b????c?b?c?a????c?a?c≥1
【例6】设a,b,x,y为实数,证明:(a2?b2)(x2?y2)≥(ax?by)2. (a2?b2)(x2?y2)?(ax?by)2
?(a2x2?b2y2?a2y2?b2x2)?(a2x2?b2y2?2abxy)
?(ay?bx)2≥0
【例7】设a,b,c为正实数,证明:
abc3a?b2c2a?b?c(1). ??≥; (2)??≥b?ca?ca?b2b?ca?ca?b2
abc3(1)??? b?ca?ca?b2
1??b1??c1??a?????????????b?c2??a?c2??a?b2?
1?a?ba?c?1?b?cb?a?1?c?ac?b?????????????2?b?cb?c?2?a?ca?c?2?a?ba?b? 1?a?bb?a?1?a?cc?a?1?b?cc?b?????????????2?b?ca?c?2?b?ca?b?2?a?ca?b?
1(a?b)21(a?c)21(b?c)2
??????≥02(a?c)(b?c)2(b?c)(a?b)2(a?c)(a?b)
a2b2c2a?b?c(2) ???b?ca?ca?b2
1?1??c1??a?b?a????b????c????b?c2??a?c2??a?b2?
a?a?ba?c?b?b?cb?a?c?c?ac?b?????????????2?b?cb?c?2?a?ca?c?2?a?ba?b?
?aa?bbb?a??aa?ccc?a??bb?ccc?b????????????????????2b?c22??2b?c2a?b??2a?c2a?b?(a?b?c)(a?b)2(a?b?c)(a?c)2(a?b?c)(b?c)2
???≥0 2(b?c)(c?a)2(b?c)(b?a)2(a?c)(a?b)
【例8】已知a2?b2?c2?d2?1,证明:
(a?b)4?(a?c)4?(a?d)4?(b?c)4?(b?d)5?(c?d)4≤6.
(a?b)4?(a?c)4?(a?d)4?(b?c)4?(b?d)4?(c?d)4?6
?(a?b)4?(a?c)4?(a?d)4?(b?c)4?(b?d)4?(c?d)4?6(a2?b2?c2?d2)2
?(a4?4a3b?6a2b2?4ab3?b4)?(a4?4a3c?6a2c2?4ac3?c4)?(a4?4a3d?6a2d2?4ad3?d4) ?(b4?4b3c?6b2c2?4bc3?c4)?(b4?4b3d?6b2d2?4bd3?d4)?(c4?4c3d?6c2d2?4cd3?d4) ?6(a4?b4?c4?d4?2a2b2?2b2c2?2c2d2?2a2c2?2b2d2?2a2d2)
??(a4?4a3b?6a2b2?4ab3?b4)?(a4?4a3c?6a2c2?4ac3?c4)?(a4?4a3d?6a2d2?4ad3?d4) ?(b4?4b3c?6b2c2?4bc3?c4)?(b4?4b3d?6b2d2?4bd3?d4)?(c4?4c3d?6c2d2?4cd2?d4)
444444????(a?b)?(a?c)?(a?d)?(b?c)?(b?d)?(c?d)??≤0
11?2(a3?b3?c3)【例9】设a,b,c为正实数,且a?b?c?1,证明:2?2?2?≥3. abcabc222
1112(a3?b3?c3)?2?2??3 2abcabc
11?2(a3?b3?c3)222?1?(a?b?c)?2?2?2???3 bc?abc?a
?a2b2a2c2b2c2?2(a3?b3?c3)??2???2?2?2?2?? bacacbabc???c2c22c2??b2b22b2??a2a22a2???2?2????2?2????2?2?? ababacacbcbc???????cc??bb??aa?????????????≥0 ?ab??ac??bc?
b?cc?aa?b(a2?b2?c2)(ab?bc?ca)???≥3. 【例10】设a,b,c为正实数,证明:abcabc(a?b?c)222
b?cc?aa?b(a2?b2?c2)(ab?bc?ca)????3 abcabc(a?b?c)
222?bccaab??(a?b?c)(ab?bc?ca)?????????b????3? aabbccabc(a?b?c)????????ba??bc??ca?(a?b?c)(ab?bc?ac)?3abc(a?b?c)????2?????2?????2?? abc(a?b?c)?ab??cb??ac?(a?b)2a3c?ac3?b3c?bc3?a3b?ab3?2abc(a?b?c)??? ababc(a?b?c)
3322(a?b)2a(c?b?bc?bc)???
ababc(a?b?c)
课后习题
【演练1
】设a,b,
c为正实数,x,y,z为实数,证明:
x2?y2?
z2≥
????
.
?
222??? ?????????≥0???
【演练2】已知a,b,c为正实数,且a?b?c?1,证明:a2?b2?c2?1≥4(ab?bc?ca). ?a2?b2?c2?(a?b?c)2≥4(ab?bc?ca)
?(a?b)2?(b?c)2?(c?a)2≥0.
【演练3】设x,y为实数,证明:3(x?y?1)2?1≥3xy. ?3x2?6(y?1)x?3(y?1)2?1?3xy≥0
?3x2?(3y?6)x?3y2?6y?4≥0
??(3y?6)2?12(3y2?6y?4)
??27y2?36y?12??3(3y?2)2≤0.
【演练4】设a,b,c为实数,证明:(a??1)(b2?1)(c2?1)≥(ab?bc?ca?1)2. ?a2b2c2?a2?b2?c2≥?2ab?2bc?2ca?2a2bc?2ab2?2abc2 ?a2b2c2?(a?b?c)2?2abc(a?b?c)≥0.
?(abc?a?b?c)2≥0.
【演练5】已知三角形的三边长a,b,c及其面积S
,证明:a2?b2?c2≥,并指出等号成立的条件.
?(a2?b2?c2)2?48S2?3(?a4?b4?c4?2a2b2?2b2c2?2c2a2) ?4a4?4b4?4c4?4a2b2?4b2c2?4c2a2≥0.
?(a2?b2)2?(b2?c2)2?(c2?a2)2≥0.
专题二 两个基本不等式及其应用技巧
概述
均值不等式(又称算数几何平均值不等式,AM?GM不等式)与柯西不等式(Cauchy不等式)在不等式的证明中有着非常特殊的地位,具有重要的作用,这两个不等式的证明以及它们的运用,均涉及到解决一般不等式问题的基本方法和技巧,熟练掌握和灵活运用这两个不等式,对于提高我们解决和证明不等式问题的能力、运算能力、逻辑推理能力,都具有重要的作用, 要证明均值不等式需要用到数学归纳法,先简单谈谈数学归纳法.数学归纳法是数学上证明与自然数n相关的一类命题的方法,在高中数学中应用广泛,尤其是在数列问题.原则上,凡是和所有自然数相关的命题,均可以尝试用数学归纳法证明.常用的数学归纳法包括第一数学归纳法和第二数学归纳法.第一数学归纳法的证明过程如下:(1)首先验证n取初始值n0(一般为0或1,也有特殊情况)时命题成立;(2)假设n?k(k≥n0)时结论或立,在此基础上,证明n?k?1时命题也成立:综合(1)(2),即可得到命题对一切自然数n(n≥n0)都成立.第二数学归纳法的证明过程如下:(1)首先验证n取初始值n0(一般为0或1,也有特殊情况)时命题成立;(2)假设n≤k(k≥n0)时结论成立.在此基础上,证明n?k?1时命题也成立:综合(1)(2),即可得到命题对一切自然数n(n≥n0)都成立. 定理1 设a1,a2,…,a
n都是正实数,则有MGM?a1?a2?…?an.(A
a1?a2?…?an
,等号成立,当且仅当
n
不等式)
证明:设An?
a1?a2?…
?an
,Gn?An≥Gn.
n
a1?a21
2≥0,知A2≥G2成立,等号成立条件为a1?a2; 22
(1)当n?
2时,由
(2)假设当n?k时,有Ak≥Gk成立且等号成立条件为a1?a2?…?an, 那么当n?k?1时,有:
11
?(k?1)Ak?1?(k?1)Ak?1???(a1?a2?…
?ak?1)?(k?1)Ak?1? 2k2ka?(k?1)Ak?1?1?1???Ak?k?1≥Gk
??2?k2?Ak?1?
?从而,Ak?1≥Gk?1,等号成立条件为:a1?a2?…?an,ak?1?
Ak?1,Gk即
a1?a2?…?ak?ak?1,从而结论对n?k?1时也成立;
综合(1)(2)可知,命题对于一切正整数都成立.
推论1 设a1,a2,…,an都是正实数,则(1
)a1?a2?…?an≥;(2)
nna1n?a2?…?an≥na1a2…an,等号成立当且仅当a1?a2?…?an.
推论2 设a1,a2,…,an都是正实数,p1,p2,…,pn为正常数,则
n
?px
kk?1
k
????
≥??pk???xkp??k?1??k?1?
nn
1/
?pk
k?1
n
,等事情成立当且仅当a1?a2?…?an.(加权AM?GM不等式)
定理2 设a1,a2,…,an;b1,b2,…,bn是两组实数,则有:
2222
(a12?a2?…?an)(b12?b2?…?bn)≥(a1b1?a2b2?…?anbn)2
,等号成立当且仅当
aa1a2
??…?n.(Cauchy不等式) b1b2bn
?n2??n2??n?
证明:根据拉格朗日(Lagrange)恒等式??ai???bi????aibi???(aibj?ajbi)2易知原不等式
?i?1??i?1??i?1?1≤i?j≤n
2
成立,等号成立当且仅当aibj?ajbi?0,即
aaiajaa
,也即1?2?…?n. ?
b1b2bnbibj
推论1 设a1,a2,…,an;b1,b2,…,bn是两组实数,则有:
(a1?a2?…?an)(b1?b2?…?bn)≥…2,等号成立当且仅当?111
推论2 设a1,a2,…,an为实数,则(a1?a2?…?an)???…?
an?a1a2a1?a2?…?an.
aa1a2
??…?n. b1b2bn
?2
?≥n,等号成立当且仅当?
22
推论3 设a1,a2,…,an为实数,则n(a12?a2?…?an)≥(a1?a2?…?an)2,等事情成立当且仅当
a1?a2?…?an.
此外,如果a1,a2,…,an为正实数,有以下几种常见变形形式. ai?n?变形1 ?aibi?≥??ai?;
i?1i?1bi?i?1?
n
n
2
ai2?n?
变形2 ?bi?≥??ai?.
i?1i?1bi?i?1?
n
n
2
在不等式的证明中,通常会涉及到常数的变换,裂项,变量引入等方法,具有很强的灵活性,熟练掌
握基本不等式的证明是学好不等式的关键,多练习、总结与反思才能灵活变通,活学巧用.
【例1】设a,b,c为正实数,利用均值不等式证明以下不等式:
(1)a2?b2?c2≥ab?bc?ca;
(2)3(a2?b2?c2)≥(a?b?c)2≥3(ab?bc?ca);
a?b?c3(3
.(调和不等式) 1113??abc
?a2?b2≥2ab?(1)?b2?c2≥2bc
?22?c?a≥2ca
(2)由(1)可得.
1(3
) 111??abc【例2】设a,b,c为正实数,且a?b?c?1,证明以下不等式:
111??≥9: abc
?1??1??1?(2)??1???1???1?≥8; ?a??b??c?
(3)(1?a)(1?b)(1?c)≥8(1?a)(1?b)(1?c); (1)
?bca??acb??abc?(4)???????????≥10. ?abc??bac??cab?
?111?(1)?????a?b?c?≥9 ?abc?
(2)?
b?cc?aa?b??≥
8 abc?8. (3)左??(a?b)?(a?c)??(b?c)?(b?a)??
(c?a)(c?b)?
≥?8(a?b)(b?c)(c?a)?右.
(4)bcacbccaab?≥2c.???≥a?b?c?1 ababc
ab2abc111?≥???≥??≥原稿缺 bcaccbccaababc
【例3】设x,y,z为正实数,且xyz?
1,求证:x2?y2?z2?xy?yz?zx≥ 1??左??
?x2?? x??
≥
【例4】设a1,a2,…,an为正实数,记S?a1?a2?…?an,证明:
ana1a2n??…?≥. S?a1S?a2S?ann?1
左≥(a1?a2?…?an)2
?a(S?a)ii
i?1n?2S2S??ai?1n2i≥S2S2S?n2?n. n?1
【例5】非负实数a1,a2,…,an满足a1?a2?…?an?1,证明:
ana1a2n??…?≥. 1?a2?a3?…?an1?a1?a3?…?an1?a1?a2?…?an?12n?1
左?ana1?…? 2?a12?an
(a1?…?an)2
≥ a1(2?a1)?…?an(2?an)
?11n≥?. 22?(a12?…?an)2?12n?1
n
【例6】设x,y,z,w为正实数,证明:
xyzw2???≥. y?2z?3wz?2w?3xw?2x?3yx?2y?3z3
(x?y?z?w)2(x?y?z?w)2
?左≥ ?(y?2z?3w)4(xy?yz?zw?wx?xz?yw)3(x?y?z?w)2?8(xy?yz?zw?wx?xz?yw)
?(x?y)2?(y?z)2?(z?w)2?(w?x)2?(x?z)2?(y?w)2≥0.
【例7】设a,b,c为正实数,且ab?bc?ca?1,证明:?111???????ab?bc?ca?≥3(a?b?c) ?abc?111??≥3(a?b?c). abc
?bccaab??≥a?b?c. abc
?bcca?a?b≥2c
??caab??≥2a c?b
?abbc?c?a≥2b.?
【例8】设x,y,z为正实数且xyz?1,证明:
x3y3z33??≥. (1?y)(1?z)(1?z)(1?x)(1?x)(1?y)4
x31?y1?z3x??≥. (1?y)(1?z)884
x331?(1?y)(1?z)≥4(x?y?z)?4(1?x?1?y?1?z)
13∴ ?(x?y?z)?24
3≥.4
【例9】设a,b,c是正实数,证明:
a3b3c31??≤. 222222222222(2a?b)(2a?c)(2b?c)(2b?a)(2c?a)(2c?b)a?b?c
(2a2?b2)(2a2?c2)?(a2?b2?b2)(a2?c2?a2)≥(a2?ab?ac)2?a2(a?b?c)2. ?左≤?a1? 2(a?b?c)a?b?c
【例10】设x1,x2,…,xn都是正实数且?
xi?1,证明:i?1nn?ni?1
?左??
i?1n ≥
n2
i?n2?i?1n
?
??
n?
?xni.
i?1
n
i?1 i?x课后练习
【演练1】设a,b,c为正实数,证明:
a2b2c2
(1)??≥a?b?c; bca
111111(2). ??≥??2a2b2ca?bb?cc?a
?a211?1?≥??b?≥2a?4a4ba?b?b??b211?1(1)??c≥2b (2)??≥ c4b4cb?c???c2?111?≥?a≥2c.??4c4ac?a.a??
111222??≥??. 1?a1?b1?c1?a1?b1?c
1111?11?142????????左=. ?≥??b?cc?aa?b2?b?cc?a?2(b?c)(c?a)1?c【演练2】设a,b,c为正实数且a?b?c?1,证明:
【演练3】设x,y,z为正实数,且x?y?z?
13.
2左=1?xy?3≤?????. 2?z?xz?y?2【演练4】设正实数a1,a2,…,an满足a1?a2?…+an?1,求证:
??1??1?1?(n2?1)2
(1)?a1????a2???…??an??≥; aaan?1??2?n??
?1??1??1??n2?1?(2)?a1???a2??…?an??≥??. aaan???1??2?n??
????11(2)左=?a1?2?n2?……?an?2?n2? na1nan????
??1????1?2?n?12??≥(n?1)??a1??n2a?n??……?n?1??an?n2a??1?n???????211n2n?1222n
??n??n?1?nn?1122????n?1?≥?n?1????2n33n2?1?2n?n????n??a1?an?????n3?n?n??
?n2?1????. n??n11?1
????n?1??n2?1???1?1??(1)左?n??a1??……?an???≥n??.(由(1)) ????????a1?ann??n??????
1?x21?y21?z2
??≥2. 【演练5】设x,y,z为大于?1的实数,证明:1?y?z21?z?x21?x?y22222n21n1n
1?x22a(a?b?c)22(a?b?c)2
左≥???≥2??≥2 21?y2c?ba(2c?b)3(ab?bc?ca)1?z2?2
专题三 均值不等式与柯西不等式的联用
概述
在实际的不等式证明中,利用一次不等式放缩往往并不能直接证明结论,而是常常需要联合多种方法来进行证明.同时,由于均值不等式与柯西不等式的重要地位,其运用也非常灵活,在恰当的时机利用平均值不等式与柯西不等式往往能够在证明不等式的过程中收到奇效.
利用平均值不等式与柯西不等式进行不等式的证明过程中,通常会结合分析法,综合法,换元法来进行证明,同时,对于其次不等式的齐次化与归一化也通常是化简和证明不等式的有效手段.
a2b2c23??≥. 【例1】设a,b,c为正实数,证明:(a?b)(a?c)(b?a)(b?c)(c?a)(c?b)4
(a?b?c)2(a?b?c)2
?2左≥ 22(a?b)(a?c)(a?b?c)?3(ab?bc?ca)4(a?b?c)2?3(a2?b2?c2)?9(ab?bc?ca)
111?(a?b)2?(b?c)2?(c?a)2≥0. 222
x3y3z3?? 【例2】已知x,y,z为正实数,且满足x?y?z?
1,证明:1?x81?y81?z8444
(x4?y4?z4)21?左≥.
58513x(1?x)(x?x)x13??……x
?8个44
∴x13?y13?z13?x5?y5?z5
【例3】设a,b,c,d是正实数,且满足a?b?c?d?1,证明:
16(a3?b3?c3?d3)≥a2?b2?c2?d2?. 8
(a3?b3?c3?d3)?(a?b?c?d)≥(a2?b2?c2?d2)2.
原式 1左≥6(a2?b2?c2?d2)2≥a2?b2?c2?d2?. 8
n?1【例4】设a,b,c,??0,且a?bn?1?cn?1anbncn1?1(n≥2),证明:. ??≥b??cc??aa??b1??
(an?1?bn?1?cn?1)2
左≥n?2 a(b??c)?bn?2(c??a)?cn?2(a??b)
?(an?2b?bn?2c?cn?21 a)??(an?2c?bn?2a?cn?2b)
≥1
an?1?bn?1?cn?1??(an?1?bn?1?cn?1)
?1. 1??
【例5】设a,b,c为正实数,且a?b?c?1,证明:abc??≥3(a2?b2?c?) bca?a2b2c2??????(a?b?c)≥3(a2?b2?c2)ca??b
?abcabbcca?????≥2(a2?b2?c2)bcacab333222 ?a3ab2a2c?≥3a2,??cb?b
?a3b3c3??ab2bc2ca2??b3bc2ab2
2222由???≥3b.??????2????≥3(a?b?c) acca?ab??b?c?c
?c3a2cbc2
?≥3c2??ba?a
a3b3c3
结合??≥a2?b2?c2(排■可证.) bca
【例6】设a,b,c是正实数,证明:
?a4?a2b2≥2a3b?4223444222222333?b?bc≥2bc?(a?b?c)??ab?bc?ca?≥2(ab?bc?ca) ?4223?c?ca≥2ca
同理……≥2(ab3?bc3?ca3)
?(a4?b4?c4)?(a2b2?b2c2?c2a2)?(a3b?b3c?c3a)?(ab3?bc3?ca3)①
4442222223332??(a?b?c)(ab?bc?ca)≥(ab?bc?ca)? ?4442222223332??(a?b?c)(ca?ab?bc)≥(ab?bc?ca)
(a4?b4?c4)(a2b2?b2c2?c2a2)≥(a3b?b3c?c3a)(ab3?bc3?ca3)② 由①、②,将原式两边平方既得.
【例7】已知a,b,
c是非负实数,证明:(a?b)3?4c3≥.
利用2a2b?2ab2≥
(a?b)3?4c3?a3?b3?3a2b?3ab2?
4c3
≥
a3?b3?a2b?ab2?4c3??(a2?b2)(a?b)?4c3?
≥
?
?
a2?3b2b23c2c2?3a2
??≥4.
【例8】设a,b,c是正实数,且a?b?c?3,证明:2ab(4?ab)bc2(4?bc)ca2(4?ca)
2ab?2b22(a?b)法一:左≥?2 ??≥
?4ab(4?ab)ab(4?ab)≥4?4. 2?111?????2aat2abc????2≥?法二:?2. 4?abab(4?ab)ab(4?ab)4t?3?a
(其中t?111. ??)abc
2?111?????b21t2abc???ab2(4?ab)??a(4?ab)≥?4t?3.
?a
4t2
. ?左≥≥4.(?t≥3)4t?3
【例9】设x,y,
z?1,证明:
2221.
2
??
?
a?c.
b左2
2(a?b?c)?1. ?2
【例10】已知实数a,b,c,x,y,z满足:(a?b?c)(x?y?z)?3,(a2?b2?c2)(x2?y2?z2)?4,证明:ax?by?cz≥0. a2?b2?c2
?k4. 令222x?y?c
abc令a1?,b1?,c1?. kkk
x1?kx,y1?ky,z1?kz.
则a12?b12?c12?x12?y12?z12?2.
(a1?b1?c1)(x1?y1?z1)?3.
(x1?a1)2?(y1?b1)2?(z1?c1)2?4ax?by?cz?a1x1?b1y1?c1z1? 2
14(x1?y1?z1?a1?b1?c1)2?4(x1?y1?z1)(a1?b1?c1)?4?≥?0 22
课后练习
【演练1】已知a1,a2,…,an为正实数,证明:
222ananan?1ana12a2a1a2?1??…??≥??…??. 222a2a3ana12a2a3ana1
2?a1a122a1anan?a12?1≥ 累加得 ?…??n≥2?…???. 22a2a2a2a12aa?21?
2ana12又2?…?2≥n a2a1相加得证.
?abc??111?【演练2】已知a,b,c是正实数,证明:????≥(a?b?c)????. ?bca??abc?2
a2b2c2abccab?2?2?2???≥3???. bcacababc
a2b2c2abc由(1)得2?2?2≥??. bcabca
abc结合??≥3.可证. cab
(b?c?a)2(a?c?b)2(b?a?c)23??≥【演练3】设a,b,c为正实数,证明:2. a?(b?c)2b2?(a?c)2c2?(b?a)25
?a(b?c)6≤ a2(b?c)25
左≤?a(b?c)a(b?c)4aa?b?c≤??12?12. ???2(b?c)34a?3b?3c4a?3b?3c2a(b?c)?(b?c)a2??(b?c)2
444
9(a?b?c)6?. (4a?3b?3c)5≤12?12
a?b2c2b?a2c2c?a2b2
【演练4】设a,b,c为正实数,ab?bc?ac?3,证明:??≥3. b?ca?ca?b
www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。