tamuhsmc

 

DEExam

TexasA&MHighSchoolMathContestOctober24,2015

Answersshouldincludeunitswhenappropriate.

1.Twoferryboatsplybackandforthacrossariverwithconstantspeeds,turningatthebankswithoutlossoftime.Theyleaveoppositeshoresatthesameinstant,meetforthe?rsttime700feetfromoneshore,continueontheirwaytothebanks,returnandmeetforthesecondtime400feetfromtheoppositeshore.Determinethewidthoftheriver.

2.Threemen,A,B,andC,workingtogether,doajobin6hourslesstimethanAalone,in1hourlesstimethanBalone,andinone-halfthetimeneededbyCwhenworkingalone.WhatisthetimeneededbyAandB,workingtogethertodothejob.√n?1<0.01.3.Findthesmallestintegernsuchthat

4.Findallpossiblevaluesoftheexpression

|x+y|+|z+x

||y|+|z|

8.Leta,bbepositiverealnumbers.Findthevaluesofmforwhichtheequation

|x?a|+|x?b|+|x+a|+|x+b|=m(a+b)

hasatleastonerealsolution.

9.Ifcos2α=m,?ndsin6α+cos6α.

10.Findtheremainderobtainedbydividingx2015byx2?3x+2.11.Solvethesystem??logyx+logxy

xy

??√3=5/2=2712.Solvetheequation??x4=13.5.

13.Findallpairs(x,y)ofrealnumberssuchthatx2+2xsin(xy)+1=0.

1

14.Acircleistangenttothecoordinateaxesandtothehypotenuseofthe30??60??90?triangleABCasshown,whereAB=1.Findtheradiusofthecircle.

15.InaquadrilateralABCD,itisgiventhat∠A=120?,anglesBandDarerightangles,AB=13,and

AD16.Findallvaluesofcsuchthatthepolynomialscx3?x2?x?(c+1)andcx2?x?(c+1)haveacommonroot.

17.Findallxsuchthat0≤x<2πandsin3x=2sinx.

18.InatriangleABC,ADandAEtrisect∠BAC.ThelengthsofBD,DE,andECare2,3,and6,

19.InthequadrilateralABCD,segmentsABandCDareparallel,themeasureofangleDistwicethatofangle

segmentsADandCDareaandbrespectively.FindthemeasureofAB.

20.Supposethatthefunctionf(n)satis?esf(x)+f(y)=f(x+y)?xy?1foreverypairx,yofrealnumbers.Iff(1)=1,?ndallintegersnsuchthatf(n)=n.

21.IfP(x)denotesapolynomialofdegreensuchthatP(k)=k

DEExam,Solutions

TexasA&MHighSchoolMathContestOctober24,2015

Answersshouldincludeunitswhenappropriate.

1.Lett1andt2bethetimesfromstarttilltheboatsmeetforthe?rstandthesecondtime,respectively.Ifwisthewidthoftheriver,andvisthesumofspeedsoftheboats,thenvt1=wandvt2=3w,hencet2=3t1.Oneferrytraveleddistance700feetattimet1,andattimet2ittraveledw+400=3·700feet.Therefore,w=3·700?400=1700feet.

2.Leta,b,andcbeproductivitiesoftheworkers(jobperhour).Thenthestatementsoftheproblemare:

1

a

andweareaskedto?nd

a+b+c1?6=12c,=1

a?6(a+b)=

a?6c=

b1b1b????1c?

c?3?(a+b)=?c=11bandb·b2

=1224.Discardingthenegativeroot,wegetc=3/4,hence1c=4/3hours=80minutes.

√?(n?1)√√n?1=n

n,henceweareaskedto?ndthesmallestintegern3.Wecanrewriten?1√+√√n?1>100.Ifn?1>100,then2suchthat√n+n?1=100.Therefore,theanswerisn=2501.

4.Wehave|x+y|≤|x|+|y|,hencethesumislessthan3.Ontheotherhand,twoofthenumbers,sayxandy,areofthesamesign.Then|x+y|=|x|+|y|,andoneofthesummandsisequalto1.Hence,thesumSsatis?es1≤S≤3.Ifwesetx=1,y=1,z=?a,where0<a≤1,thentheexpressionisequalto1+21?a1+atakesallvaluesintheinterval[0,1)when0<a≤1.Therefore,ouroriginalexpressiontakesallvaluesintheinterval[1,3)forx=y=1,z=?a.Thevalue3isattainedforx=y=z=1.Itfollowsthatthesetofpossiblevaluesoftheexpressionistheclosedinterval[1,3].

5.Fromthesecondequationy?2xy=0wegety(1?2x)=0,hencey=0orx=1/2.Ify=0,thenthe?rstequationbecomesx=x2,whichhassolutionsx=0orx=1.Ifx=1/2,thenthe?rstequationis1/2=1/4+y2,hencey2=1/4,whichhassolutionsy=1/2ory=?1/2.Thereforetheansweris(x,y)=(0,0),(1,0),(1/2,1/2),or(1/2,?1/2).

6.Since0≤x<π,sinxispositive,andwecanwritethe?rstequationas

??,5

or11?cos2x.

12±√27121/4

Takingsquareofbothsides,weget

1

5

or

2cos2x?

cosx+cos2x=1?cos2x,

2

25=0.

Solvingitasaquadraticequationforcosx,weget

2

4

cosx=

25

5

±

2

1+48

10

,

??

hencecosx=4/5orcosx=?3/5.Thensinx=

1?16/25=3/5or

ab

.

8.Letusassumethata≤b.Thecaseb≤awillbesimilar.If?a≤x≤a,then?b≤x≤b,and|x?a|+|x+a|=2a,|x?b|+|x+b|=2b,henceform=2solutionsareallnumbers?a≤x≤a.

Ifa≤x≤b,then|x?b|+|x+b|=2b,and|x?a|+|x+a|=x+a+x?a=2x,sothattheequationbecomes2x+2b=m(a+b),whichhassolutionx=m2b.Itmustsatisfya≤x≤b,whichisequivalentto2a+2b≤2x+2b≤4b,whichisequivalentto2(a+b)≤m(a+b)≤4b,i.e.,2≤m≤4bsatisfym(a+b)a+b.

Thecases?b≤x≤?aandx≤?barereducedtothepreviouscasesbyreplacingxby?xintheequation.

Itfollowsthatthesetofvaluesforwhichtheequationhasasolutionis[2,+∞).9.Wehavecos2α=2cos2α?1,hencecos2α=

1+m

2

4

,whichmust

==

1?m

4

4

.

?1?m

2

4

1+2m+m2?1+m2+1?2m+m2

10.Theremainderisapolynomialoftheformax+bsatisfying

x2015=P(x)(x2?3x+2)+(ax+b)

forsomepolynomialP(x).Thepolynomialx2?3x+2hasroots1and2,therefore

1=a+b,

22015=2a+b

Subtractingthe?rstequationfromthesecond,wegeta=22015?1.Then,fromthe?rstequationwegetb=2?22015.Therefore,theansweris(22015?1)x+(2?22015).

1

11.Wehavelogyx=

t

+t=5/2,

2

hence

t2?

2

5

±

??

4

?4

2

±3

,2

hencet=2ort=1/2.Ift=2,thenlogxy=2,i.e.,y=x2.Ift=1/2,thenx=y2.Inthe?rstcasethesecondequationgivesx3=27,inthesecondcasewegety3=27.Hence,theansweris(x,y)=(3,9)or(9,3).

√√

√√4=12+312.Wehave333

2x/3

=27

4

13.Letusreplacesin(xy)byanothervariablea.The

discriminantD=4a2?4.Sincexhastobereal,D≥0.cases:??

sin(xy)2

x+2x+1and

??

sin(xy)x?2x+1

2

quadraticequationx2+2ax+1=0inxhasBut?1≤a≤1,soa=±1.Hence,wehavetwo==

10

??x

isincreasing.

Inthe?rstcasewegetx=?1andy=?π/2+2kπ,k∈Z.Inthesecondcasewegetx=1andy=?π/2+2kπ,k∈Z.

14.LetA1,B1,andC1bethefeetoftheperpendicularsfromthecenterOofthecircletothelinesAC,CB,andAB√,respectively.ThenOA1CB1isasquare.Denotetheradiusbyr.ThenBB1=r?1/2,

3/2)=1.ItfollowsthatAA1=√

r?

3+

r==?1=0

15.SinceBandDarerightangles,wecancircumscribeacirclearoundABCD,andACwillbeitsdiameter.LetObethecenterofthecircle,andritsradius.Then∠DOB=120?,since∠DCB=60?.Usingthelawofcosines,weget

DB2=462+132+2·46·13·

1

3,∠DOB=120?.ItfollowsthatDB=2·r·

√2

=

31

16.Inotherwords,weareaskedtosolvethesystem

??cx3?x2?x?(c+1)=cx2?x?(c+1)=00

Wehavecx3?x2=x+c+1=cx2,hencex2(cx?1?c)=0.Itfollowsthateitherx=0,orcx?1?c=0.Inthe?rstcasewegetc+1=0,hencec=?1.Inthesecondcasewehavec=0,andx=1+c

cintotheequations,weseethatbothofthemaresatis?ed.Itfollowsthatthepolynomialshaveacommonrootforallc=0.Notethatforc=0thepolynomialsare?x2?x?1and?x?1,sotheyhavenocommonroots.Answer:allc=0.

17.Wehavesin3x=sinxcos2x+sinxcos2x=sinxcos2x+2sinxcos22x.Therefore,theequationisequivalentto

sinx(cos2x+2cos2x?2)=0.

Ifsinx=0and0≤x<2π,thenx=0orπ.Ifsinx=0,then

cos2x+2cos2x?2=0

whichcanbewritten

2cos2x?1+2cos2x?2=0,√or4cos2x=3,hencecos2x=3/4,orcosx=±6,5π6,11π

924x+y2?3xya=9

4x2?xya=5,xya=5

weget24x?5,hencey2=524x?5intothe?rstequation,

x2+5

2

4x2+10=4,

1

40

.

19.LetDD1bethebisectoroftheangleD,whereD1isapointonthesegmentAB.Then∠AD1D=∠D1DC=∠ADD1,hence△DAD1isisosceles,sothatAD1=a.ThelineDD1isparalleltoBC,henceDD1BCisaparallelogram,sothatD1B=DC=b.WeconcludethatAB=a+b

.

20.Wehavef(n)+f(1)=f(n+1)?n?1,hencef(n+1)=f(n)+n+2.Itfollowsf(2)=1+3,

.f(3)=1+3+4,f(4)=1+3+4+5,e.t.c.,f(n)=1+3+4+5+···+n+1=(n+1)(n+2)

2Notethat(replacingnbyn?1)wegetf(n?1)=f(n)?n?1,whichgivesaproofbyinductionfor2theformulaf(n)=n+3n?2

2=n,

n2+3n?2=2n

n2+n?2=0.

Rootsaren=1,?2.

21.Theconditionimpliesthatthepolynomial(x+1)P(x)?xhasroots0,1,2,...,n.Since(x+1)P(x)?xhasdegreen+1,itfollowsthat(x+1)P(x)?x=cx(x?1)(x?2)···(x?n)forsomenon-zeronumberc.Consequently,P(x)=cx(x?1)(x?2)···(x?n)+x

(n+1)!x(x?1)(x?2)···(x?n)+x

n(n+1)!(n+1)n(n?1)···1+(n+1)n+2.In

otherwords,P(n+1)=

www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。


TOP最近更新内容

    园林史名词解释
    长城小学关爱留守儿童工作制度
  • 上一篇:四川省成都市龙泉中学2016-2017学年高二10月月考数学(文)试题 Wo
  • 下一篇:一个读公立学校的国内高中生,可以通过海外夏校走多远