1016A.V.Milkovetal.
Fig.6.Variationofmolecularandisotopicpropertiesofvoidgases(opencircles)andhydrate-boundgases(solidsquares)fromSites1244(a),1245(b),1246(c),1247(d),1248(e),1249(f),1250(g),1250(h).ThedepthsofBSR,BSR2,HorizonsAandY,andthecalculatedbaseoftheGHSZ(Table1)areindicated.
GashydratesystemsatHydrateRidgeoffshoreOregon1017
Fig.6.(Continued)
gashydratesimplythatgashydratesinthedeepesthorizonsneartheBSR,evenatSiteswithsea?oorseepage(e.g.,Site1250),crystallizefromrelativelypuremicrobialgases(C1andC2)whilegashydratesatshallowerdepthscrystallizefromgasthatisatleastpartiallythermogenic.Theserepresentthetwoend-membergashydratesystems.Italsoappearsthatsomegashydratescrystallizefromamixtureofmicrobialandthermo-genicgases.Forexample,the?13CofC2inhydratesatSite1245decreaseswithdepth(Fig.6b)suggestingthatshallowhydrateshaveslightlyhigherportionofthermogenichydrocar-bonsthanthedeeperhydrateseventhoughthereisnosea?oorseepage.Similarly,thesamplefrom65mbsfatSite1244has?13CofC2around?43‰,which,inthecontextofothersamplesfromdeepsediments,impliesthatgashydratecontainsatleastsomethermogenicC2.Apparently,HydrateRidgeis
characterizedbyacomplex?uidmigrationsystem,whichincludesbothmigrationofthermogenicgasesfromdeepsedi-mentsorreservoirsandlocalgenerationofmicrobialgases.Onlyonegashydratefrom7.4mbsfatSite1248Bcontainedenoughi-C4andn-C4tomeasure?13C(?26.2‰and?23.0‰respectively,Table3)consistentwiththethermogenicoriginofthesegases(Clayton,1991).
5.2.3.CarbonIsotopicCompositionofCO2
Carbondioxideinmostgashydrateshas?13Cvalues(Figs.5fand8e)similartothoseintheadjacentgasvoids(Tables3andEA-1,Fig.6).TheCO2inmostgashydrateshassourcessimilartothatingasvoidsanditsisotopicpropertiesdependonthefactorsthatcontroltheisotopiccompositionof
dissolved
1018A.V.Milkovetal.Fig.7.ComparisonofcarbonisotopiccompositionofCO2andthe
C1/CO2ratioingasvoidsandgashydratesfromSite1248.Notethat
gashydratesingeneralarerelativelydepletedinCO2
.
CO2inshallowsediments.Athigh?uxSites1248to1250,the
hydrate-boundCO2maymigratefromgreatdepthstogether
withpartiallythermogenichydrocarbons.Nevertheless,some
samples(15of42)areenrichedin12Crelativetovoidgases
(Fig.6).Fourofthesesamplesarenearshallowdepthswhere
methaneisoxidizedviasulfatereduction(Boetiusetal.,2000).
ThesesamplescontainCO13
30‰(Site2with?Cvaluesasnegativeas
?121248).However,mostgashydratesamplesthatcontainC-enrichedCO2arefromdepthswhereanaerobic
oxidationofC1shouldnotbeoccurring.
Sassenetal.(1998)observedsigni?cantenrichmentofhy-
drate-boundCO2in12C(with?13Cvaluesasnegativeas
?27.8‰)ingashydrateoutcropsintheGulfofMexico.These
authorssuggestedthattheenrichmentisaresultofmicrobial
oxidationofhydrate-boundmethane.Wespeculatethatthis
explanationmaybevalidforourobservationsatHydrateRidge
whereanextensivemicrobialcommunityoxidizingmethaneis
knowntooccurnearthesea?oor(Boetiusetal.,2000;Knittel
etal.,2003).The12C-enrichedCO2istheonlygasgeochemical
evidencepointingtothemicrobialoxidationofmethane.The
hydratesamplesthatmayhaveexperiencedmicrobialoxidation
basedoncarbonisotopesofCO2donotshowsigni?cantly
higherCO2concentration(Fig.9e)ormorepositive?13CofC1
(Fig.9f)relativetonon-oxidizedsamplesasmaybeexpected
(Kastneretal.,1998;Sassenetal.,1998).Thismaybeex-
plainedbylessextensivemicrobialoxidationordifferentstart-
ingmaterialthanpurelythermogenicgashydratesitesstudied
intheGulfofMexico.Alternatively,the12C-enrichedhydrate-
boundCO2couldbearesultofcontaminationduringdecom-
positionofbicarbonateintrappedandsurroundingporewaters.
Itiscurrentlythoughtthatsigni?cantmicrobialoxidationof
CwithabundantSO2?1islimitedtoshallowsediments4that
providestheelectronacceptorneededtofacilitatetheanaerobic
oxidationofC1(Valentine,2002).AtHydrateRidge,hydrate-
boundCO2isenrichedin12CrelativetoadjacentgasvoidsbyFig.8.Histogramsillustratingisotopicproperties(?13CofC[c],C[e],and?DofC1[a],C23[d],CO21[b])ofhydrate-boundgasescollectedonLeg204.asmuchas15‰indeepSO2?4-freesedimentsatSiteswithnosigni?cantsea?oorseepage(e.g.,samplefrom65mbsfatSite1244).LorensonandCollett(2000)alsofound12C-enrichedCO2ingashydratefromadepthof331mbsfatSite997
on
GashydratesystemsatHydrateRidgeoffshoreOregon1019
Fig.9.Relationshipsbetweenthekeymolecularandisotopicpropertiesofhydrate-boundgasesfromHydrateRidge.Arrowsshowtheincreasingcontributionofthermogenicgasesasfollowsfromincreasesinvaluesof?13CofC1(a,b,d),?13CofC2(c,d),?DofC1(a),andconcentrationofC2(c),anddecreaseinratioC1/C2?(b).Somegashydratesmayhavehydrate-boundC1partiallyoxidizedtoCO2,althoughmostgashydratesdonotshowagoodcorrelationbetween?13CofCO2andtheconcentrationofCO2(e)or?13CofC1and?13CofCO2(f).
BlakeRidge.Theseobservationsmaysuggestthathydrate-boundC1isactivelyoxidizedevenwheresulfateiscompletelydepleted.Itispossiblethatsomemicrobesuseotherelectronacceptors(Fe3?orS0)thatoxidizeC1underanoxicconditions.Thismechanismissupportedbytheobservationofthemeta-?2?2?
stablesul?demineralgreigite(Fe3S4)associatedwith2Fe
highconcentrationofdisseminatedgashydratesinpores(Mus-graveandHollamby,2003).Morespeci?cstudiesareneededtoelucidatethemechanismsandreactionsinvolvedinthepossi-bleoxidationofC1indeepmarinesediments.
5.3.CompositionandOriginofGasesinHorizonAand
TheirRelationtoShallowGasHydratesTréhuetal.(2002)suggestedthattheprominentseismicHorizonA(Fig.2)mightbeassociatedwithamigrationcon-duitthatsupplies?uidsintotheGHSZandmayfeedseepageattheSouthernSummitofHydrateRidge.ThishorizonwasdrilledonLeg204(Sites1245,1247,1248,and1250)andwasfoundtorepresentarelativelypermeablelayerofsandandashwithsigni?cantgassaturation(Tréhuetal.,2003).VoidgasescollectedfromHorizonAandadjacentsedimentscontainsig-ni?cantC1(mean96.15%)andCO2(mean2.35%)andminoramountsofC2?hydrocarbons(Table4,Fig.10a).BecausegasesmigratingalongHorizonAareapparentlyenrichedinC2?gasesrelativetosedimentssurroundingthishorizon(Figs.6b,6d,6e,and6g),itsuggeststhatgasesmigratingalongHorizonA?ndtheirwaytothesea?oorandformtheshallowgashydrateaccumulationatSites1248to1250.
ThecarbonisotopiccompositionofgasfromHorizonA(Table4andFig.10b)indicatesthatalthoughmostorallC2?gaseshaveapredominantlythermogenicorigin,C1maybemainlymicrobial.Chungetal.(1988)proposedtoextrapolatethecarbonisotopecompositionofC2,C3andC4toestimatethe?13CofpurethermogenicC1andtocalculatethecontributionofmicrobialmethanetothemixedgases.Usingthismethod,weestimatethatthermogenicC1thatiscogeneticwiththeC2?gasesfromHorizonAshouldhavea?13Cvaluearound?45‰(Fig.10b).Moreover,theprojectedcarbonsourceoftheC2?gasesmayhave?13Cvaluesbetween?15‰and?20‰,whichisconsistentwithmarineorganicmatterphotosynthe-sizedduringpost-OligoceneperiodsofloweredatmosphericCO2(Arthuretal.,1985;Deanetal.,1986).Kineticmodels(e.g.,Rooneyetal.,1995;BernerandFaber,1996;Tangetal.,2000)furthersuggestthatgaswiththeobservedisotopiccom-positionofC2-C5wasgeneratedattemperaturesintherange120to140°C(assumingthatgasisgeneratedfromTypeIIkerogeninMioceneoryoungermarineshalesatheatingrates1to5°C/Ma).IfthegeothermalgradientatHydrateRidgeis?55°C/km(Table1,Tréhuetal.,2003),thenmostoftheC2?gasesandsomeC1encounteredinHorizonAweregeneratedasdeepas?2to2.5km.ThesegaseshavemixedwithmicrobialC1duringmigrationtoshallowsediments.ThecarbonisotopiccompositionofC1migratingwithinHorizonA(?13CofC1isperhapsaround?61‰)andtheestimatedisotopic
composition
1020
A.V.Milkovetal.
)
‰(14
C91fo–D?2
O673614
......C410125–5
8
96
C...523-i222)
–––‰,C34
91770
1C.....?23926-(n22122n–––––oitisop4
874866
mC......555656-oi222222––––––ccipot403620
o3
......siC465657222221n––––––obraC194660
2
......C909001232333––––––238847
1
......C155441666666––––––2OC924166245330/11C?2C477078/90222612411CS
2ddddddHnnnnnn2
211832
O445823C337069......3213205
3Cdddd1d
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。