量与温度的相关系数为0.670 8,随机负荷分量与温[3] Papalexopoulos A D,Hesterberg T C.A regression-based approach to 度的相关系数为?0.073 7,由此可以看出负荷序列经short-term system load forecasting[J].IEEE Transactions on Power 小波分解后已经有效地把长期增长分量及随机负荷 Systems,1990,5(4):1535-1547.
分量分离出来,为进一步数据挖掘做好了准备。 [4] Amjady N.Short-term hourly load forecasting using time-series
modeling with peak load estimation capability[J].IEEE Transactions
2.2 分时段考虑长期增长分量 on Power Systems,2001,16(3):498-505.
负荷的长期增长一方面表现为基荷的增加,另[5] Moghram I,Rahman S.Analysis and evaluation of five short-term 一方面也表现为峰谷差的增大。也就是说,不同时load forecasting techniques[J].IEEE Transactions on Power Systems,段的增长率并不完全相同,如果各时段采用同一的1989,4(4):1484-1491.
[6] Komprej I,Zunko P.Proceeding of The 6th Mediterranean Electro
长期增长分量的话,有可能导致前后序列的峰谷差technical Conference[C].IEEE,Ljubljana,1991.
不一致。因此提出了另一种考虑负荷长期增长分量[7] Trudnowski D J,McReynolds W L,Johnson J M. Real-time very 影响的方式,即分别计算各个时段的平均增长率。 short-term loadprediction for power-system automatic generation
设某日第i点的负荷数据为x(i,n),则N天内control[J].IEEE Transactions on Control Systems Technology,2001,
9(2):254-260.
第i点的负荷序列为x(i,n),可以采用如下方式来[8] Chan S H,Ngan H W,Chow W L.A flexible load forecasting model 计算各时刻的平均增长率。 for integrated resources planning[C].International Conference on
设各时刻平均增长率为β(i),则负荷满足 Electric Utility Deregulation and Restructuring and Power
x(i)=nβ(i)+ε (12) Technologies,2000.
式中:x(i)为n×1的向量;n为n×1的向量;β(i)是收稿日期:2007-11-20。
i时刻的平均增长率;ε为n×1的向量;平均增长率作者简介:
β(i)可用最小二乘法进行计算。 王雁平(1973—),男,助教,硕士,从事检测技术与智能控制方面研究;
乐春峡(1976—),女,讲师,硕士,从事运动控制方面研究。 β(i)=(nTn)?1nTx(i) (13)
(实习编辑 王晔)
各个时段的平均增长率可用图2来表示。
bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。