圆中最值问题

 

与圆有关的最值(取值范围)问题

引例1:【2012年武汉市中考】在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一

象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.

引例2:【2013年武汉市元月调考试题】如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆

AB上的一个动点心OA长为半径作⊙O,C为半圆弧?(不与A、B两点重合),射线AC交⊙O于点E,BC=a,

AC=b,求a?b的最大值.

引例3:【2013年武汉市四月调考试题】如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O

上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为( ).

A.

3B.6 C

D.

一、题目分析:

此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接

1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;

2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;

3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用;

综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.

二、解题策略

1.直观感觉,画出图形;

2.特殊位置,比较结果;

3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

【2013年武汉市中考】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形的边长为2,则线段DH长度的最小值是

第 1 页 共 6 页

www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。


TOP最近更新内容

    长城小学关爱留守儿童工作制度
    园林史名词解释
  • 上一篇:八年级数学第十六册教学计划
  • 下一篇:解直角三角形应用专项训练