七年级下册数学知识点归纳
第6章实数
1、平方根:
⑴、定义:如果√a=a,则√a叫做a的平方根,记作“√a?”
(a称为被开方数)。
⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。⑶、算术平方根:正数a的正的平方根叫做a的算术平方根,记作“√a”。
2、立方根:
⑴、定义:如果a=a,则x叫做a的立方根,记作“a”(a称为被开方数)。⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。 二、规律总结:
1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同
3、a本身为非负数,即a≥0;a有意义的条件是a≥0。
4、公式:⑴(√a)2=a(a≥0);⑵a?=a?(a取任何数)。
5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0 二实数的概念及分类:
(1).自然数(小学):数出物体个数的这样的数,如1、2、3、4、5......叫做自然数。
(2).整数(小学):0和自然数叫做整数。
(3)整数(中学):正整数、负整数和0统称为整数。
(4)正数:大于0的数叫做正数。
(5)负数:小于0的数叫做负数。
(6)分数(小学):形如1/2、5/3、7(3/5)这样的数叫做分数。
(7)分数(中学):有限小数和无限循环小数统称为分数。
(8)有理数:整数和分数统称为有理数。
(9)无理数:无限不循环小数叫做无理数,具体表示方法为√2、√3这样的数。
(10)实数:有理数与无理数统称为实数。
www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。