小学五年级奥数试题行程问题(北大奥数卷)

 

小学五年级奥数试题:行程问题(北大奥数卷)

在人们的生活中离不开“行”,“行”中有三个重要的量:路程、速度、时间。研究这三个量的典型应用题叫做行程问题。这三个量之间的关系可以用下面的公式来表示:

路程=速度×时间

速度=路程÷时间

时间=路程÷速度

相遇问题和追及问题是行程问题的两个重要的类型。

相遇问题是指两个物体在行进过程中相向而行,然后在途中某点相遇的行程问题。其主要数量关系式为:

总路程=速度和×相遇时间

追及问题是指两个物体在行进过程中同向而行,快行者从后面追上慢行者的行程问题。其主要数量关系式为:

路程差=速度差×追及时间

例1姐姐放学回家,以每分钟80米的速度步行回家,12分钟后妹妹骑车以每分钟240米的速度从学校往家中骑,经过几分钟妹妹可以追上姐姐?

分析:经过12分钟,姐姐到达A地,妹妹骑车回家。如下图所示:

从图中可以看出妹妹从出发到追上姐姐这段时间里,妹妹要比姐姐多行的路程就是姐姐12分钟所走的路程,也就是妹妹与姐姐的路程差。有了路程差,再求出速度差,根据追及问题的数量关系式

追及时间=路程差÷速度差

就可求出妹妹追上姐姐的时间。

解答:妹妹与姐姐的路程差

80×12=960(千米)

妹妹与姐姐的速度差

240-80=160(千米)

妹妹追上姐姐的时间

960÷160=6(分)

答:经过6分钟妹妹追上姐姐。

例2 一辆公共汽车和一辆小轿车同时从相距360千米的两地相向而行,公共汽车每小时行35千米,小轿车每小时行55千米,几小时后两车相距90千米?

分析:两车从相距360千米的两地同时出发相向而行,距离逐渐缩短,在相遇前某一时刻两车相距90千米。如下图

这时两车共行的路程为

360-90=270(千米)

值得注意的是,当两车相遇后继续行驶时,两车之间的距离又从零逐渐增大,到某一时刻,两车再一次相距90千米。如下图所示

从图中可知,这时两车共行的路程为

360+90=450(千米)

根据相遇问题的数量关系式

www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。


TOP最近更新内容

    园林史名词解释
    长城小学关爱留守儿童工作制度
  • 上一篇:一年级下册必北古诗
  • 下一篇:泉州市2016—2017学年度上学期初中教学质量监测初三语文试题