四年级奥数-第2讲-速算与巧算

 

第2讲 速算与巧算

上一讲我们介绍了一类两位数乘法的速算方法,这一讲讨论乘法的“同补”与“补同”速算法。

两个数之和等于10,则称这两个数互补。在整数乘法运算中,常会遇到像72×78,26×86等被乘数与乘数的十位数字相同或互补,或被乘数与乘数的个位数字相同或互补的情况。72×78的被乘数与乘数的十位数字相同、个位数字互补,这类式子我们称为“头相同、尾互补”型;26×86的被乘数与乘数的十位数字互补、个位数字相同,这类式子我们称为“头互补、尾相同”型。计算这两类题目,有非常简捷的速算方法,分别称为“同补”速算法和“补同”速算法。

例1 (1)76×74=? (2)31×39=?

分析与解:本例两题都是“头相同、尾互补”类型。

(2)与(1)类似可得到下面的速算式:

由例1看出,在“头相同、尾互补”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如1×9=09),积中从百位起前面的数是被乘数(或乘数)的十位数与十位数加1的乘积。“同补”速算法简单地说就是: 积的末两位是“尾×尾”,前面是“头×(头+1)”。

我们在三年级时学到的15×15,25×25,?,95×95的速算,实际上就是“同补”速算法。

例2 (1)78×38=? (2)43×63=?

分析与解:本例两题都是“头互补、尾相同”类型。

(2)与(1)类似可得到下面的速算式:

由例2看出,在“头互补、尾相同”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如3×3=09),积中从百位起前面的数是两个因数的十位数之积加上被乘数(或乘数)的个位数。“补同”速算法简单地说就是:

积的末两位数是“尾×尾”,前面是“头×头+尾”。

观察: 66×46,73×88,19×44。

这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。这类算式有非常简便的速算方法。

例3:88×64=?

www.99jianzhu.com/包含内容:建筑图纸、PDF/word/ppt 流程,表格,案例,最新,免费下载,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。


TOP最近更新内容

    长城小学关爱留守儿童工作制度
    园林史名词解释
  • 上一篇:一年级家长会班主任发言稿
  • 下一篇:三年级知识竞赛题库