基于+Aspen+Adsorption+的活性炭吸附溶液中镍离子的模拟研究(2)

 

透仅用了500 s,可见镍离子进料浓度越大,穿透曲线斜率越大,床层越快被穿透。这说明,提高进料中镍离

子的浓度,单位时间进入床层的镍离子量增大,而床层饱和吸附量增大的幅度相对较小,因此未被吸附的镍离子迅速进入下一段床层,传质区迅速向床层顶部移动,使床层越快被穿透。

3.4 进料流速对吸附过程的影响

图4所示为进料镍离子浓度为50 mg/m3时,进料流速分别为0.002 m3/s、0.001 m3/s、0.0006 m3/s的穿透曲线。

Fig.4 Effects of feed flow rate on adsorption process.

图4 进料流速对吸附过程的影响

由图4可以看出:进料流速从0.001 m3/s增大到 0.002 m3/s时,床层的饱和吸附量不变,但开始穿透时间从3500 s提前至1700 s,而且从开始穿透到完全穿透时间差由11500 s缩短至4300 s;进料流速从0.001 m3/s减小到0.0006 m3/s时,开始穿透时间从3500 s推迟至

5500 s,开始穿透到完全穿透时间差也大幅增大。这说明,进料流速的大小对床层的最大吸附量没有影响,但进料流速越大,穿透时间越小,曲线沿液体流动方向的移动速度越大,床层越快被穿透。随着进料流速增大,液体与吸附剂的接触时间减少,传质区迅速到达床层顶部,传质时间缩短,镍离子未被活性炭吸附就进入下一段床层。

3.5 传质系数对吸附过程的影响

传质是吸附过程最重要的环节,研究传质系数对传质效果的影响具有重要意义。液体流速、吸附剂空隙率、粒径和操作条件等变化都会影响传质系数,进而影响饱和吸附量[16-17]。在实际工业过程中,增加液体流速、减小空隙率和吸附剂的颗粒直径都可以增大传质系

数。设置进料流量为0.001 m3/s,进料浓度为 50 mg/m3,在模拟过程中不改变进料量和进料浓度等条件的情况下,调整传质系数的大小,观察穿透曲线的变化。图5所示为传质系数变化对穿透曲线的影响。 由图5可知:传质系数为0.001 s-1时,穿透曲线分布相对平缓;而传质系数为0.1 s-1、10 s-1、1000 s-1时,穿透曲线基本重合,并且与0.001 s-1相比其分布较为陡峭。这表明,传质系数越小,对吸附过程影响越大;当传质系数≥0.1 s-1,改变传质系数对吸附过程影响极


442 计算机与应用化学 2013, 30(4)

2 Yao Jian. Environmental Economics. Chengdu:Southwest

University of Finance and Economics University Press, 2001:130-132.

3 Li Zilong, Ma Shuangfeng, Wang Dong, et al. Study on adsorption

model and mechanism of metal ion organics onto activated carbon from aqueous solution. Environmental Science and Management, 2009, 10, 34(10):88-92.

4 Kadirvelu K, Thamaraiselvi K and Namasivayam C. Adsorption of

nickel(Ⅱ) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 2001, 22:497-505.

5 Vimal Chandra Srivastava, Indra Deo Mall and Indra Mani Mishra.

Adsorption of toxic metal ions onto activated carbon study of sorption behavior through characterization and kinetics. Chemical Engineering and Processing, 2008, 47:1269-1280.

6 Hu Haixiang. Heavy metal wastewater treatment technology

situation and development direction. China Resources Comprehensive Utilization, 2008, 2, 26(2):23-25.

7 Liu Benxu and Song Baodong. Simulation of hydrogen chloride

dehydration by Aspen Adsorption. Chemical Industry and Engineering, 2012, 3, 29(2):58-62.

8 Yang Yangang, Ding Yanbing, Ma Zhengfei, et al. Removal of CO

and CO2 from ammonia synthesis gas by pressure swing adsorption with layered bed. Chemical Engineering, 2012, 8, 40(8):42-46.

9 Zhou Yuanyuan, Yang Huawei and Zhang Donghui. Experiment

and simulation of N2/CH4 by pressure swing adsorption separation. Natural Gas Chemical Industry, 2011, 36(5):21-27.

10 Zhen Liu, Carlos A Grande, Ping Li, et al. Multi-bed vacuum

pressure swing adsorption for carbon dioxide capture from flue gas. Separation and Purification Technology, 2011, 81:307-317. 11 Hu Zhihui, Zhang Donghui and Wang Jixiao. A simulation of

citrus oil adsorption separation in the supercritical carbon dioxide. Chemical Industry and Engineering Progress, 2011, 30:36-40.

12 Jin Tengjingyi, Shi Cuandaxiong and An Buyufu. Simulation

Science. Li Gouxi, Translation. Beijing:Chemical Industry Press, 2006.

13 Aspen Technology, Inc. Aspen Adsorption Help, 2009.

14 Juan Liu, Jinchang Liu, Xin Yao, et al. Thermodynamic study on

the adsorption of nickel ion onto activated carbons. C-MRS Meeting-2012.

15 Krishnan K A, Sreejalekshmi K G and Baiju R S. Nickel(Ⅱ)

adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith. Bioresource Technology, 2001, 16:1-9. 16 Rosen J B. General numerical solution for solid diffusion in fixed

bed. Industrial and Engineering Chemistry, 1954, 46(8):1590- 1594.

17 Shi Haishan, Wang Mei and Ma Rui. Simulation of adsorption

process of low-concentration coal bed methane. Journal of China Coal Society, 2012, 37(9):1483-1487.

小,穿透曲线改变不显著。

Fig.5 Effects of mass transfer coefficient on adsorption process.

图5 传质系数变化对吸附过程的影响

4 结论

(1) 以静态吸附实验数据为基础,对活性炭吸附镍离子的穿透曲线模拟结果与实验结果吻合较好。这表明,模型的假设、数学模型的选择和参数的设置都较为准确;建立的实验室规模的单塔吸附模型模拟计算出的结果也比较准确。

(2) 进料镍离子浓度越高,穿透曲线斜率越大,床层也越快被穿透。

(3) 进料流速的大小对床层的最大吸附量没有影响,但进料流速越大,穿透时间越小,曲线沿液体流动方向的移动速度越大,床层越快被穿透。

(4) 传质系数较小时,其对吸附性能影响较大;而当传质系数≥0.1 s-1,改变传质系数对吸附性能并没有显著的影响。

(5) 利用Aspen Adsorption对实验研究进行辅助设计,不仅可以减少实验工作量和成本,而且模拟结果对操作条件的选择具有指导作用。

References:

1 Brady D and Rose P D. The use of hollow fiber cross-flow

microfiltration in bioaccumulation and continuous removal of heavy metals from solution by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 1994, 44(11):1362-1366.

Simulation study on adsorption of nickel ion onto activated carbon from aqueous solution based on Aspen Adsorption

Liu Jinchang, Cao Junya, Liu Juan and Xie Qiang*

(School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 10083, China)

Abstract: Adsorption process of nickel ion onto activated carbon from aqueous solution was simulated and studied with the aid of Aspen Adsorption. The model of a laboratory scale column for nickel adsorption was built on the basis of the experimental data fitting and the adsorption isotherm constants estimating. The nickel ion concentration at exit of adsorption column vs time curve and bed axial loading distribution of nickel ion were obtained from simulation results with the assumption of process parameters, including feed flow rate of 0.001 m3/s and feed concentration of 50 mg/m3. Also, the influences of feed concentration, feed flow rate and mass transfer coefficient on adsorption process and breakthrough curve were investigated. The results reveal that the simulated values of the model are consistent with experimental data and the bed is completely penetrated after 15000 s. Penetration time decreases from 3500 s to 1500 s as the feed concentration of nickel ion increases from 50 mg/m3 to 5000 mg/m3, and it decreases from 3500 s to 1700 s while the feed flow rate varies from 0.001 m3/s to 0.002 m3/s. Mass transfer coefficient has a significant influence on adsorption capacity, especially when its value is less more than 0.1 s-1. The modeling study provides reference data for scale-up experiment and industrial application. Keywords: activated carbon, nickel ion adsorption, Aspen Adsorption, breakthrough curve

(Received: 2013-01-15; Revised: 2013-03-12)


基于 Aspen Adsorption 的活性炭吸附溶液中镍离子的模拟研究作者:

作者单位:

刊名:

英文刊名:

年,卷(期):刘金昌, 曹俊雅, 刘娟, 解强, Liu Jinchang, Cao Junya, Liu Juan, Xie Qiang中国矿业大学 北京化学与环境工程学院,北京,100083计算机与应用化学Computers and Applied Chemistry2013(4)

本文链接:http://d.g.wanfangdata.com.cn/Periodical_jsjyyyhx201304025.aspx

bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。


TOP最近更新内容

    江苏省盱眙县都梁中学高中数学第2章平面向
    绿豆蛋花是怎样制作及具有什么样的功效?
  • 上一篇:采暖分户管径-定额设计技术标准
  • 下一篇:安全风险预控考试卷