冰蓄冷空调系统预测方法的回顾(1)

 
冰蓄冷空调系统预测方法的回顾(1)

[15]

用于客观天气预测的模型输出统计(Model output statistics)可以给出精确的未来天气撒尼“然而,这种方法需要大量的气象数据和超级计算机;而不适于在线控制。实时控测。气象参数和负荷预测的方法大多数基于最小M乘回归分析。1989年MacA-rthur[16]等利用以前测量的环境温度和当地气预报的最高、最低温度来预测未来温度曲线。 1995年Kawashima等采用预报的最高,最低温度和ASHRAE建议的形状系数预测环境逐时温度[17].因为利用了更有效的信息,他们的方法优于仅采用过去测量气象数据的方法。Chen对天气预报的最高、最低温度作了更详尽的修正。由数据采集系统实测室外温度,并根据算法是未来几个小时的逐时温度;同时将室外温度变化分为上升阶段和下降阶段,分别计算各时刻的形状系数;二者共同用于室外温度的预测,取得了较好的效果。

2.2 逐时太阳辐射的预测

1996 年,Kawshima将天气分为晴、阴、多云、雨四种典型情况。首先根据实测数据拟合出用于预测次日太阳辐射总量的多项式,然后乘以逐时的系数来预测次日的太阳辐射[18].Chen将太阳辐射细分为10个级别,并给出了它们的相对于各时刻历史最大太阳辐射强度的中值,用于太阳辐射的预测,他发现对于晴朗小时或天晴间多云(sunny hour or day)预测效果较好;而对于不确定的天气状况,如晴间多云(clearing and clouding)则有一定的偏差[14].在建筑物能耗预测结果的报告中[19],前六名分别为英国剑桥卡文迪许实验室的Mackay[20]、瑞典 Lund大学理论物理系的Ohlsson[2]、普林斯顿大学中心研究实验室汽车研究和发展公司的Feuston[22],南非的Stevenson [23]、日本东京电气工程部的Iijima[24]、日本东京技术大学的Kawashima[25].他们分别在各自的文章中介绍了自己的模型和预测方法。其中,只有Iijima采用了非ANN的分段线性回归方法。虽然算法取得了较为满意的结果,但是作者指出线性算法的在解决实际非线性问题时,还是有限局性的。 温度和太阳辐射是影响建筑物冷负荷的主要因素,其他参数的预测,如相对湿度等,本文不再赘述。

3 建筑物逐时冷负荷的预测

简单的负荷预测方法是将当天的负荷作为第二天冷负荷的预测值。1985年Tamblyn利用测量仪器,如流量计和温差传感器产生准确的冷吨一小时冷负荷曲线,然后建立冷负荷与环境温度和内部负荷之间的函数关系,用于负荷预测[26].1989


年Meredith等在利用BASIC程序进行蓄冷系统模拟时,根据ASHRAE通用负荷曲线(ASHRAE 1987),采用四阶多项式回归得到方程来预测模拟日的负荷[27]。 RuChti[28]采用了标准日、最热日负荷预测器进行负荷预测。这种方法实际上是将一定时期内(如一个月)某一特殊的负荷图样作为该时期每天的负荷图样。此方法简单、计算量小、比较适合于一般的工程应用,对运行管理水平要求不高,但远不能满足优化和控制的要求。

1989 年Boonyatikam等指出采用数学模型预测空调冷负荷的缺陷,包括①详细模型需要内存的增加;②数学方程不容易适应外界条件或运行状况的改变;③计算机处理时间过长;④有精度要求时,对建筑物的输人描述过多等。为了避免这些问题,作者采用基于实际空间响应(负荷)而不是理论模型的预测函数。收集相关变量的历史数据用于分析。将每一个变量,如:室外干球温度、相对温度、人射太阳辐射、风速、风向、负荷等的数值记录到数据文件中,最后采用多元线性回归导出预测方程[29]。

1989年MacArthur等采用ARMAX时序模型进行负荷预测,预测误差在5%以内[16].

1989 年Spethmann[7]和1994年Simmonds[3]采用第二天预报的最高、最低温度、历史形状因子曲线,并区分了工作日与周末。首先预测室外温度,然后通过温度曲线和历史形状因子进行负荷预测,并将算法集成于预测优化蓄冷控制器。实际运行时,测量温度和负荷用于对预测值的在线修正。

1990 年Ferrano采用ANN预测次日总冷负荷,并与实时专家系统结合用于迈阿密一幢建筑冰蓄冷系统控制。根据每天24小时的温度波动情况,分三种温度模式:冷(COld)10℉、暖(warm)14℉下和普通(normal)2.5℉,对神经网络进行训练。神经网络训练完成后,预测值与理想值的偏差为 4%[30]。

以上研究工作具有各自的特点,然而各预测模型间没有性能对比。1993年,在ASHRAE首届建筑物能量预测竞赛中,在对比多个参赛选手的预测结果后,Kreider指出为了达到更为精确的预测效果,传统方法将让位于新的预测方法,如ANN.1995年Ka- washima采用完全相同的数据集,对包括ANN模型在内的七种预测模型(ARIMA、LR、EWMA)进行比较论证,指出ANN模型预测最精确[17]。


4 结束语

准确的预测是冰蓄冷系统优化和控制的基础和前提。根据以上文献,目前冰蓄冷系统中的温度预测通常采用形状因子法;而对于太阳辐射和建筑物冷负荷的预测,人工神经网络是更为有效的方法。

bbs.99jianzhu.com内容:建筑图纸、PDF/word 流程,表格,案例,最新,施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。


TOP最近更新内容

    备战2017高考技巧大全之高中数学黄金解题模
    师生认同和幼儿交往能力的发展
  • 上一篇:拆除工程专业施工方案
  • 下一篇:成都市建设项目容积率计算细则